Bisimulation on Speed: A Unified Approach™

Gerald Liittgen !

Department of Computer Science, University of York, York YO10 5DD, UK

Walter Vogler

Institut fir Informatik, Universitdt Augsburg, D-86135 Augsburg, Germany

Abstract

Two process—algebraic approaches have been developed for comparing two bisimul-
ation—equivalent processes with respect to speed: the one of Moller/Tofts equips
actions with lower time bounds, while the other by Liittgen/Vogler considers upper
time bounds instead.

This article sheds new light on both approaches by testifying to their close re-
lationship. We introduce a general, intuitive concept of “faster—than”, which is
formalised by a notion of amortised faster—than preorder. When closing this pre-
order under all contexts, exactly the two faster—than preorders investigated by
Moller /Tofts and Liittgen/Vogler arise. For processes incorporating both lower and
upper time bounds we also show that the largest precongruence contained in the
amortised faster—than preorder is not a proper preorder but a timed bisimulation.
In the light of this result we systematically investigate under which circumstances
the amortised faster—than preorder degrades to an equivalence.

Key words: Asynchronous systems, timed process algebra, time bounds,
faster—than relation, amortised faster—than preorder, bisimulation.

* An extended abstract appeared in V. Sassone, ed., Intl. Conf. on Foundations
of Software Science and Computation Structures (FOSSACS 2005), volume 3441
of Lecture Notes in Computer Science, pages 79-94, Edinburgh, Scotland, 2005.
Springer—Verlag.

1" Corresponding author. Email: walter.vogler@informatik.uni-augsburg.de; phone:
+49 821 598-2120; fax: +49 821 598-2175

Preprint submitted to Elsevier Science 11 August 2005



1 Introduction

Process algebras provide a popular framework for modelling and analysing the
communication behaviour of asynchronous systems [7]. Various extensions of
classical process algebras, such as Milner’s Calculus of Communicating Sys-
tems (CCS) [19], are also well established in the literature, including timed
process algebras [6]. Timed process algebras add constructs for modelling time-
outs and delays of actions, and thus enable one to reason not only about the
communication, or functional, behaviour of processes but also about their
timing behaviour. Despite the vast literature on timed process algebra, most
of which has concentrated on capturing behaviour in terms of process equiv-
alence and refinement, there is relatively little work on relating functionally
equivalent processes with respect to speed. This is surprising since designers of
distributed algorithms are very interested in knowing which one out of several
possible solutions to a given problem is the most time efficient one. Indeed,
time efficiency is not something that can only be decided once an algorithm
is implemented — often lower and/or upper time bounds on the algorithm’s
actions are known at design time [18].

Within timed process algebra, the idea of “faster—than” was first addressed
by Moller and Tofts [21] who studied an extension of CCS, called TACS" in
this article, that allows for specifying lower time bounds of actions. They pro-
posed the MT-preorder which refines bisimulation [19] and has recently been
put on firm theoretical grounds via a full-abstraction result established by us
in [17]. Previously, we had also investigated an analogous approach to extend-
ing CCS with upper time bounds of actions, which resulted in the calculus
TACS" and the LV-preorder [16]; this preorder was also justified intuitively
by a full-abstraction result. That latter work complements research in various
Petri-net [14,24] and process—algebra [9] frameworks that are equipped with a
testing semantics [11] rather than a bisimulation semantics. The main short-
coming of our previous research is that the reference preorders for the two
full-abstraction results — though similar in spirit — are quite different in de-
tail and indeed somewhat tuned towards the desired outcomes. In addition, we
have not explored, and neither have others in the literature, the consequences
of combining both lower and upper time bounds in a single setting.

1.1  Contributions

This article presents a unified approach to studying faster-than preorders
for asynchronous processes. It unifies the previously known results on faster—
than preorders in two ways. Firstly, it proposes a natural reference preorder
for relating two processes with respect to speed: the amortised faster—than



preorder. This preorder formalises the intuition that the faster process must
execute each action no later than the slower process does, while both processes
must be functionally equivalent in the sense of strong bisimulation [19]; here,
“no later” refers to absolute time as measured from the system start, as op-
posed to relative time which is used in our operational semantics and describes
the passing of time between actions. Although the amortised faster—than re-
lation is more abstract than the reference preorders considered in [17,16], we
show that both the MT-preorder and the LV-preorder remain fully—abstract
in TACS'® and TACS"™, respectively.

Secondly, this article characterises the largest precongruence contained in the
amortised faster-than preorder when combining the process calculi TACS"
and TACS™, so as to being able to specify both lower and upper time bounds
of actions. This is an important open problem in the literature, and it turns out
that the resulting precongruence is not a proper preorder but an equivalence,
namely a variant of timed bisimulation [20]. The concluding part of this article
systematically investigates under which circumstances a proper preorder is
obtained, and when exactly the amortised faster—than preorder degrades to
an equivalence. For example, we get a positive result as in [16] when we extend
TACS™ by actions that may be delayed arbitrarily long; such lazy actions are
useful for, e.g., modelling system errors that are not bound to occur within
some fixed time interval.

The full-abstraction results of this article complete the picture of faster—than
preorders within bisimulation—based process algebras. On the one hand, the
various published faster—than preorders can be traced back to the same notion
of “faster—than”, which is rooted in the concept of amortisation. On the other
hand, the amortisation approach highlights the limits for defining a useful
faster—than preorder that fully supports compositionality.

1.2 Organisation

The next section presents our process—algebraic framework of Timed Asyn-
chronous Communicating Systems (TACS), of which both TACS" [21,17]
and TACS™ [16] are sub—calculi. Sec. 3 then introduces the amortised faster—
than preorder and generalises the full-abstraction results of [17] and [16]. For
the full TACS calculus, Sec. 4 shows that the amortised faster—than preorder
degrades to a congruence rather than a precongruence, when closed under all
contexts, while Sec. 5 sheds further light on the borderline between precon-
gruence and congruence results. Finally, Secs. 6 and 7 discuss related work
and present our conclusions, respectively.



2 Timed Asynchronous Communicating Systems

Our process algebra TACS combines the timed process algebras TACS" [17]
and TACS" [16], both of which extend Milner’s CCS [19] by permitting the
specification of lower and respectively upper time bounds for the execution of
actions and processes. These time bounds will be used in the next sections
for comparing processes with respect to speed. Syntactically, TACS includes
two types of actions: lazy actions o and urgent actions a; the idea is that the
former can idle arbitrarily, while the latter have to be performed immediately.

(13 b

It also includes one clock prefixing operator “o.”, called must—clock prefix,
for specifying minimum delays and another “c.”, called can—clock prefiz, for
specifying maximum delays. Semantically and as in CCS, an action a or a
communicates with the complements @ or @, irrespective of whether either
action is urgent. This communication results in an urgent internal action, if
both participating actions are urgent, and a lazy internal action otherwise.
Moreover, TACS adopts a concept of global, discrete time that behaves as
follows: process o.P must wait for at least one time unit before it can start
executing process P (lower time bound), while process g.P can wait for at
most one time unit (upper time bound); thus, g can be understood as a
potential time step. Upper time bounds are technically enforced by the concept
of mazimal progress [13], such that time can only pass if no urgent internal
computation can be performed.

2.1 Syntaz

The syntax of TACS is identical to CCS, except that we include the two
clock—prefixing operators and distinguish between lazy and urgent actions, as
discussed above. Formally, let A be a countably infinite set of lazy actions not
including the distinguished unobservable, internal action 7. With every a € A
we associate a complementary action @, and define A =4 {@|a € A}. Each
lazy action a € A (@ € A, 7) has an associated urgent variant, i.e., an action a
(@, 7). We define A =4 {a|a € A} and A =4 {@|a € A}, and take A (A) to
denote the set AUAU {7} (AUAU{z}). Complementation is lifted to A UA
(AUA) by defining @ =4t a (@ =q¢ a). We let a, b, ... (a,b,...) range over AUA
(AUA) and o, 3, ... (a, 3,...) over A (A). The syntax of TACS is defined as
follows:

P := 0|z|aP|aP|oP|aP|P+P|PP|P\L|Pf|uzP,

where x is a variable taken from a countably infinite set V of variables, L C A\
{7} is a restriction set, and f : A — Ais a finite relabelling. A finite relabelling
satisfies the properties f(7) =7, f(@) = f(a), and [{a| f(a) # a}| < co. The
set of all terms is abbreviated by P, and we define L = {@|a € L}. We use




the standard definitions for the semantic sort sort(P) C AUA of some term P,
open and closed terms, and contexts (terms with a “hole”). A variable is called
guarded in a term if each occurrence of the variable is within the scope of an
action— or o—prefix. Moreover, we require for terms of the form px.P that x is
guarded in P. Note that, since ¢ only denotes a potential time step, ¢.P can
perform the actions of P immediately, whence ¢ does not count as a guard.
We refer to closed and guarded terms as processes, with the set of all processes
written as P, and let = stand for syntactic equality.

2.2  Semantics

The operational semantics of a TACS term P € P is given by a labelled
transition system and an urgent action set. The labelled transition system
has the form (P, AU {o}, —, P), where P is the set of states, AU {o} the
alphabet, — C P x (AU {o}) x P the transition relation, and P the start
state. Transitions labelled with an action « are called action transitions that,
like in CCS, are either internal activities or local handshake communications
in which two processes may synchronise to take a joint state change together.
Transitions labelled with the clock symbol o are called clock transitions repre-
senting a recurrent global synchronisation that encodes the progress of time.
Note that the transition relation is labelled by ordinary (lazy) actions only.
Urgency is dealt with in an orthogonal fashion by urgent action sets. The ur-
gent action set of some term P is defined by the rules shown in Table 2 and
contains exactly the urgent actions in which P can initially engage. Note that
the communication of two complementary actions results in an urgent silent
action only if the two participating actions are urgent.

According to our operational rules, the action—prefiz terms o. P and a.P may
engage in action o and then behave like P. The processes a.P (a € A) and
a.P (a € AUA) may also idle, i.e., engage in a clock transition to themselves,
as process 0 does; the rationale is that even an urgent communication action
may have to wait for a communication partner. The prefix a expresses a poten-
tial urgency which becomes actual only in a synchronisation with the urgent
complementary action @; see also below. The must—clock prefiz term o.P can
only engage in a clock transition to P; thus, ¢ stands for a delay of exactly
one time unit, and it can be used to define lower time bounds, since P may
perform further time steps due to clock prefixes, lazy actions or waiting for a
communication. The can—clock prefix term ¢.P can additionally perform any
action transition that P can engage in; in this sense, ¢ represents a delay of
at most one time unit and can be used to define arbitrary upper time bounds.

The term P|@ stands for the parallel composition of P and @ according to an
interleaving semantics with synchronised communication on complementary



Table 1

Operational semantics for TACS (action transitions)

- PP
Act o uAct ————— uPre ——————
aP— P a.P— P o P — P
e% ’ « / o /
Suml P —>aP Sum2 @ _>aQ Rec ]:;_> P
P+Q — P P+Q—Q px.P — P'|uz.P/x
a / a / a / a /
Coml# Com2Qa;Q ComSP—)PT @ —0Q
PIQ = PIQ PIQ = P/ PIQ = PIQ
[0 12 o /
Rel % Res P 7 P/ a¢ LUL
PIf] =% Plf] PAL—= P\ L
Table 2
Urgent action sets
U(a.P) =40 U(a.P) =gt {a} U(0) =qr )
U(o.P) =40 U(a.P) =40 U(x) =qs )
UPN\L) =qUP)\(LUL) UP[f]) =at {f(e) | €U(P)} U(uz.P)=at U(P)
UP+Q)=aUP)VUQ)  U(P|Q) =ar UP) VU(Q) U{T |UP)NU(Q) # 0}
Table 3
Operational semantics for TACS (clock transitions)
tNil > tAct > tuAct >
—0 a.P — a.P a.P— a.P
g /
tPre = tuPre ————— tRec P; — P
o.P — P P — P uxr.P — P'|ux.P/z]
P g P’ g / P o P’ o /
tSum — ~ @—0Q tCom — ~ @—0Q T ¢ U(P|Q)
P+Q-5P+Q PIQ = PIQ
g / g /
tRel ﬂ tRes P ? P
P[f] — P'[f] P\L— P'\L




actions resulting in the internal action 7. Time has to proceed equally on both
sides of the operator. The side condition of Rule (tCom) ensures that P|Q
can only progress on o, if it cannot engage in any urgent internal computa-
tion, in accordance with our notion of maximal progress. Thus, due to the
urgency of the actions, a.P|a.Q) cannot perform a time step. On the other
hand, a.P |b.Q or a.P|@.Q) can, since communication is not possible or can
at least be delayed; thus, a is urgent but also patient. Note that predicates
within structural operational rules, such as 7 ¢ U(P|Q) in Rule (tCom), are
well understood [23].

The summation operator + denotes nondeterministic choice such that P + @)
may behave like P or (). Again, time has to proceed equally on both sides
of summation, whence P + () can engage in a clock transition and delay the
nondeterministic choice if and only if both P and @ can. The restriction
operator \ L prohibits the execution of actions in L U L and, thus, permits
the scoping of actions. P|[f]| behaves exactly as P where actions are renamed
by the relabelling f. Finally, ux. P denotes recursion, i.e., ux. P behaves as a
distinguished solution of the equation x = P.

The rules for action transitions are the same as for CCS, with the exception
of the rule for the new can—clock prefix and the rule for recursion; however,
the latter is equivalent to the standard CCS rule over guarded terms [5]. It
is important to note that both faster—than settings previously investigated by
us in [17,16] can be found within TACS. The sub-calculus obtained when
considering only lazy actions (urgent actions) and only must—clock prefixing
(can—clock prefixing) is exactly the calculus TACS" (TACS™) studied in [17]
([16]). For improving readability we also write P'* (PU*) for the set of processes
in TACS" (TACS™).

The operational semantics for TACS possesses several important proper-
ties [13]. Firstly, it is time-deterministic, i.e., progress of time does not re-
solve choices. Formally, P -2+ P’ and P -2+ P” implies P’ = P”, for all
P, P',P" € P, which can easily be proved by induction on the structure of P.
This property is very intuitive, as only actions can resolve choices, and also
technically convenient. Secondly, by our variant of mazimal progress, a guarded
term P can engage in a clock transition exactly if it cannot engage in an urgent
internal transition. Formally, P —7 if and only if 7 ¢ U(P), for all guarded
terms P. In particular, processes in TACS" satisfy laziness: they can always
engage in a clock transition. Last, but not least, we note that the sort sort(P)
of any process P is finite. This is because we only allow finite relabellings.



3 Generalised Full-Abstraction Results

This section presents our unified approach to “faster—than” by introducing a
very simple and intuitive preorder, the amortised faster—than preorder, which
captures the essence of faster—than within a bisimulation—based setting, as
discussed below. Using this preorder as a reference preorder, we show that
the LV—preorder [16] and the MT—preorder [21] are fully—abstract within the
TACS™ and TACS" sub-calculi of TACS, respectively.

Definition 1 (Amortised faster—than preorder) A family (R;)ien of re-
lations over P, indexed by natural numbers (including 0), is a family of amor-
tised faster—than relations if, for alli € N, (P,Q) € R;, and a € A:

(1) P - P implies 3Q', k,1.Q ="' Q' and (P, Q') € Rivpns.
(2) Q - Q' implies P, k, 1. k+1<i, P 2" 2 P and

(P',Q) € Ri_p.
(3) P -2 P implies 3Q, k>1—i. Q -5" Q" and (P',Q') € Ri_11s.
(1) Q - Q' implies IP', k<i+1. P 2" P' and (P, Q') € Rit1_p.

We write P 2, Q if (P,Q) € R; for some family (R;)ien of amortised faster—
than relations, and call 3, the amortised faster—than preorder.

Here, —%=" stands for k consecutive clock transitions. It is easy to show that =
is indeed a preorder. While reflexivity is obvious, transitivity follows immedi-
ately from the property J.o 2 € Ry for any 7, j € N. Furthermore, (2,)ien
is the (componentwise) largest family of amortised faster—than relations.

The above definition reflects our intuition that processes that perform de-
lays later along execution paths are faster than functionally equivalent ones
that perform delays earlier; this is because the former processes are exe-
cuting actions at earlier absolute times (as measured from the start of the
processes) than the latter ones. As a simple example, consider the processes
P =4 a.b.o.0.c.0 and QQ =4 0.a.0.b.c.0. Roughly speaking, in process P, ac-
tions a, b are executed at absolute time 0 and action ¢ at absolute time 2. In
process (), analogously, action a is executed at absolute time 1 and actions b, ¢
at absolute time 2. Hence, every action in P is executed earlier than, or at
the same absolute time as in (), whence P is strictly faster than (). This idea
is formalised in the above definition as follows: () is permitted to match an a
from P by oa; the additional time step is saved as a credit by increasing the
index of R such that P can perform this time step when needed, i.e., after
its b. Thus, in Def. 1, an action or clock transition is matched by allowing the
matching process fewer or more clock transitions as far as this is allowed by
the available credit; the difference in the number of clock transitions is added



to or subtracted from the credit. In this sense, our definition is a canonical
translation of the idea of amortisation.

The amortised faster—than preorder is not yet suited as a process—algebraic
behavioural relation since it is not a precongruence. To see this, we study the
processes P =4¢ €.a.0.0.0 4+ c.a.b.0 and @ =4 c.a.b.0. The family (R;);en of
amortised faster—than relations defined by R =q4¢ {(P, Q) }U{(R, R) | R € P},
Ry =4t {{a.0.0.0,a.0.0), (5.0.0,0.0), (b.0,5.0),(0,0)} and R; =g 0, for i > 1,
testifies to P 2, (Q); note that P —%5 0.0.b.0 is matched by Q —~»—- 4.b.0 and
(a.0.0.0,a.0.0) € Ry. However, for R =4 pz.(0.d.0 | o.x), where d is a ‘fresh’
action not occurring in the sorts of P and @, we can show that P|R 2,Q| R.
Transition P|R —— a.0.b.0| R would need to be matched by a sequence of

transitions @ | R e ab0 |d.0]---]d.0|R, for some k€N and k parallel
components d.0, such that a.0.b.0| R 3, a.b.0|d.0| ---|d.0|R holds. Now,
let the latter process engage in all d—computations of the & components d.0.
Since d is a fresh action, these can only be matched by unfolding process R
in a.0.0.0 | R k—times and by executing k clock transitions and k d-transitions.
Thus, a.0.b.0| R 32,a.b.0| R would necessarily follow, i.e., no credit remains.
While the right—hand process can now engage in the sequence a.b, the left—
hand process can only match action a, but not also action b due to the lack
of credit.

The remainder of this article is concerned with the characterisation of the
largest precongruence contained in 3, for various sub—calculi of TACS, in
particular TACS" and TACS". We will also discuss below which variants
of 2, have been used for TACS" and TACS" in [17,16], and for notational

convenience we will write g;‘t and ,Eit when restricting J. to processes in
TACS"™ and TACS", respectively. The technical development of our charac-
terisations will rely on the following well-known result from universal algebra.

Theorem 2 (Universal Algebra) For every preorder X over TACS pro-
cesses, there exists a largest precongruence X°¢ in X satisfying

X={(P,Q)|(C[P],C|Q]) € X for all contexts C[]}.

If Y is a further TACS preorder such that X¢ CY C X, then X¢=Y¢.

3.1 The LV-Preorder is Fully Abstract in TACS"

TACS"™ is the sub—calculus of TACS that emerges when restricting ourselves
to urgent actions o and can—clock prefixing ¢ only, i.e., disregarding lazy
actions and must—clock prefixing. We start off by recalling some definitions
and a key result from [16].



Definition 3 (LV—preorder [16]) A relation R over P is an LV-relation
if, for all (P,Q) € R and a € A:

(1) P - P’ implies 3Q".Q > Q' and (P, Q') € R.
(2) Q = Q' implies AP'. P == P' and (P', Q') € R.
(3) P - P’ implies U(Q) CU(P) and 3Q".Q = Q' and (P, Q') € R.

We write P32, Q if (P,Q) € R for some LV-relation R, and call 3, the
LV—preorder.

This definition is of an elegant simplicity, since an LV-relation essentially
combines bisimulation on actions with simulation on clock steps; the condition
on the inclusion of urgent sets had to be added to obtain a precongruence for
parallel composition.

We also introduced in [16] an amortised variant of the LV—preorder which, in
contrast to the amortised faster—than preorder of Def. 1, does not allow for
leading and trailing clock transitions when matching action transitions — just
as for the LV-preorder. Also, for matching clock transitions, the increase or
decrease of the credit is restricted.

Definition 4 (Amortised LV—preorder [16]) A family (R;)ien of relat-
ions over P™ is a family of amortised LV-relations if, for alli € N, (P, Q) €
Ri, and o € A:

(1) P - P’ implies 3Q".Q - Q' and (P, Q') € R;.

(2) Q = Q' implies IP'. P > P' and (P, Q') € R;.

(3) P = P implies (a) 3Q".Q —>= Q' and (P',Q') € R;, or
(b) 1>0 and <P/,Q> ER;i_1.

(4) Q = Q' implies (a) AP". P > P' and (P',Q') € R;, or
(b) (P,Q) € Riy1.

We write P,%ZZ.UQ if (P,Q) € R; for some family (R;)ien of amortised LV-

" the amortised LV-preorder.

relations, and call

An important result of [16] that relates the above preorders is the following.

Theorem 5 (Full abstraction [16])  The LV-preorder 3, is the largest
precongruence contained in 58’.

The next theorem is the main result of this section and, because of EBV C Egt,
generalises the above theorem.

Theorem 6 (Generalised full abstraction in TACS") The LV-preorder
<5, 15 the largest precongruence contained in ,Sgt.

~1

10



PROOF. According to Thms. 2 and 5 it is sufficient to establish (Jp")¢ C

:|1V
~0

C IIUt. Inclusion 3% C 2" is obvious from both preorders’ definition.

To prove (5‘0“) C ,SBV we show that I =4 {(P, Q) | Cpo[P] 2" CpolQl},
for i € N, Cpgl-] =as - | px. 7.(0.7.2 + d. O) and a ‘fresh’ action d that is not in
the sorts of P and (), defines a family of amortised LV-relations. Note that,
obviously, (251)¢ € 25™. Now, let P23™Q, for some ¢ € N. We have to check

~0 ~0

the four conditions of Def. 4:

(1)

(2)

P2 P

Hence, Cpg|P] — Cpg[P'].Since Cpg[P] 3V Cpo|Q), there are Q' k.1

such that Cpg|Q] oo, o) Q' and Cpg[P'] 2 e Q'. We observe
that Cpg[@] always offers an initial urgent 7, i.e., 7 € U(Cpg|Q)]), and
that — to deal with the case @« = 7 — the 7-derivative of the context en-
ables the distinguished urgent action d, which is not offered by Cpg[P'];
we conclude that k=I=0 and Q' = Cpg|@Q'] for some Q" with Q@ — Q.
In addition we obviously have sort(P’) C sort(P) and sort(Q’) C sort(Q),
which means by the construction of Cpg[_| that Cpg[P’] I Cpe|Q'] im-
plies Cpy[P'] 3 Cpir[Q']. In summary we have established the exis-

tence of a Q' such that Q —— Q' and P’ 237 Q.

Q-

Hence, CpglQ] — Cpq|Q']. Because of Cpg[P] I} CpglQ] we know

e ka

of the existence of P',k,1 such that k+I1<i, Cpg|P ] oo, o) P
and P’ 2. CplQ']. Again, due to the 7-derivative in the context
enabhng the distinguished action d and since 7 € U(Cpgl.]), we have
k=1=0 and P' = CpglP'] for a P’ with P -5 P'. As above we in-
fer Cpig[P'] 3V Cpiy[Q']. Summarising, there exists some P’ satisfying
P -2 P and P 2 Q"

P2, p.

Hence, Cpg[P] can engage in the following three-step sequence of tran-
sitions: Cpg[P] — P|(o.7.Hpg + d.0) - P'|(r.Hpg + d.0) ——
Cpg|P'], where Hpg =4t pv. 7.(c.7.7 + d.0).

Starting with premise Cpg[P] 21" Cpg[Q] and the first step of Cpg|[P]
above, as well as considering the urgent 7-actions in Cpgl[] and d being
a distinguished action, we find ourselves in one of the following two cases:
(a) CpglQ] ——-2 Q' |(r.Hpg + d.0) for some Q' such that Q@ —— @’

and P|(¢.7.Hpg +d.0) 3}, Q' | (z.Hpq + d.0)

(b) CpqlQ] —— Q| (c.7.Hpg + d.0), as well as P|(o.7.Hpg + d.0) 3"
Q| (c.7.Hpg + d.0).

We consider each case in turn.

(a) The second step of Cpg[P], i.e., the clock transition, must be trivially
matched by Q' | (1.Hpg+d.0) since 7 € U(Q' | (1. Hpg + d.0)). Hence,
P'|(r.Hpg + d.0) must have used one credit when performing its
clock transition and P’ | (z.Hpg + d.0) 3 Q| (z.Hpg + d.0).

11



(b) The second step of Cpg[P] can only be matched by either

(i) a single clock transition Q| (¢.7.Hpg + d.0) - Q'| (. Hpg +
d.0), for some Q' with Q@ = @', and P’ | (1.Hpg +d.0) 2\ Q|
(r.Hpg + d.0); note that further clock transitions are 1mposs1—
ble since the first one makes the second urgent 7—action of the
context available; or

(ii) consuming one credit (only applicable if i>0), i.e., P'| (7.Hpg+
d.0) 2", Q| (a.1.Hpq + d.0).

In Cases (3a) and (3b.i), the third step of Cpg[P] above can only be

matched by Q'|(z.Hpg+d.0) — Cpg|Q'] such that Cpo[P'] 21 Cpe|Q],

because of the distinguished d-action and the r—actions of the context.

In Case (3b.i), the third step of Cpg[P] above implies, due to the
distinguished d—action and the urgent r—actions offered by the context,
that either

1. Q|(c.7.Hpg + d.0) - Q' | (r.Hpg + d.0) —— Cpg[Q’] for some @’
such that @ == Q" and Cpg[P'] 2\ Cp|Q']; or

2. Q | (Q.Z.HPQ—i—d 0) /s OPQ[Q] and CPQ[ /] E’,;lil OPQ[Q] The latter
implies Cprg[P'] 21, CpiolQ)] since sort(P’) C sort(P).

Summarising, for Cases (3a), (3b.i) and (3b.ii.1), we have established the

existence of a )’ satisfying Q % @ and P’ 23 Q'. For Case (3b.ii.2)

we have i>0 and P’ 2"}

(1) Q= @

Hence, Cpg[Q)] can engage in the following three—step sequence of tran-
sitions: CPQ[Q] L) Q ’ (Q.I.HPQ -+ dO) L> Q/ | (I-HPQ —+ dO) L>
CpglQ'], where Hpg is defined as above. Considering the first step of
this sequence and the premise Cpg[P] 21" Cpg|Q], we find ourselves in
one of the following two cases, again due to the 7— and d—actions of the
context:

(a) Cpg[P] — P|(c.T.Hpg + d.0), for which P|(¢.7.Hpg + d.0) "
Q | (Q.I.HPQ —f-dO)

(b) Cpg[P] consumes one additional credit after 7 (only applicable if
i>0), i.e. Cpg[P] — P|(c.7.Hpg + d.0) —— P'|(1.Hpg + d.0) as
well as P'| (1. Hpg + d.0) 3", Q| (c.7.Hpg + d.0), where P’ is such
that P -7 P’

We consider each case in turn.
(a) For matching the second step of the above three-step sequence, there
exist two possibilities:

(i) P|(c.7.Hpg + d.0) does nothing and gains one credit, which
leads to P|(a.7.Hpq +d.0) 2%, Q' | (1.Hpq + d.0). The third
step of Cpg[@)] is then matched by either

1. P | (Q.T HPQ+d 0) L P’ | (IHPQ+dO) L> CPQ[PI] and
CpqlP'] 3V CpolQ'], where P’ is such that P —~ P’; note
that the 7' step can only be performed by the context as
action d is distinguished; or

12



2. P|(a.1.Hpg + d.0) = Cpq[P] and Cpq[P] 2}},CrelQ');

we get Cpg/[P] 317, Cper[Q'] because of sort(Q') C sort(Q).

(ii) P|(oc.1.Hpg + d.0) —— P'|(r.Hpg + d.0), where P - P’

such that P'|(z.Hpg + d.0) 3* Q'| (z.Hpg + d.0). Note that

P|(g.7.Hpg + d.0) cannot engage in more than one clock tran-

sition, due to the availability of an urgent 7 in the context after

the first clock transition. The third step of Cpg[Q] can only

be matched by P’ |(r.Hpg + d.0) —— Cpg[P'], because of the

urgent 7—actions and the distinguished action d in the context.

Summarising, in Cases (4a.i.1) and (4a.ii) we have shown the exis-

tence of some P’ with P = P’ and P’ 33" Q'. In Case (4a.i.2) we
have established P 377 Q.

(b) Since P'|(r.Hpg+d.0) cannot perform any time step, it must match

the second step of Cpg|@] by doing nothing; thus, we find ourselves

in Case (4a.ii) again, which we had just settled. O

3.2 The MT-Preorder is Fully Abstract in TACS"

We turn our attention to the TACS sub-calculus TACS" in which only lazy
actions a and the must—clock prefix ¢ are available, but not urgent actions
and the can—clock prefix. Although a o—prefix corresponds to exactly one time
unit, these prefixes specify lower time bounds for actions in this fragment,
since actions can always be delayed arbitrarily. We first recall the faster—than
preorder introduced by Moller and Tofts in [21], to which we refer as Moller—
Tofts preorder, or MT—preorder for short.

Definition 7 (MT-preorder [21]) A relation R over P" is an MT-relat-
ion if, for all (P,Q) € R and o € A:

(1) P - P implies 3Q', k, P". Q 25" Q’ P’ F PP Q) € R.
(2) Q - Q' implies AP'. P -5 P’ and (P',Q’) €
(3) P - P implies 3Q".Q —~ Q' and (P, Q>
(4) Q = Q' implies IP'. P = P" and (P, Q') €

We write P 3 Q if (P,Q) € R for some MT-relation R, and call 2 . the
MT—preorder.

It is easy to see that J . is indeed a preorder and that it is the largest
MT-relation. We have also proved in [17] that J . is a precongruence for
all TACS" operators. The only difficult and non-standard part of that proof
concerned compositionality regarding parallel composition and was based on
the following commutation lemma.

13



Lemma 8 (Commutation lemma [17]) Let P, P' € P" and w € (AU
(o). If P -5 P/, for kEN, then IP". P 2" P" and P' 3 P".

This lemma holds as well within the slightly more general setting of Sec. 5.2,
in which also can—clock prefixes are allowed. We also introduced in [17] an
amortised variant of the MT—preorder, which is however less abstract than
the amortised faster—than preorder of Def. 1.

Definition 9 (Amortised MT—preorder [17]) A family (R;)ien of relat-
ions over P is a family of amortised MT-relations if, for alli € N, (P, Q) €
Ri, and o € A:

(1) P P implies 3Q", k. Q ~2" Q' and (P', Q') € Rysp.

(2) Q — Q' implies AP’ k<i. P o P and (P, Q) € Ri_y.

(3) P25 P implies 3Q", k>0. k>1—i, Q -2" @', and (P, Q') € Ri_14s.
(1) Q -2 Q' implies AP, k>0. k<i+1, P 2" P', and (P',Q') € Ris1_p.

We write P,Ej;”tQ if (P,Q) € R; for some family (R;)ien of amortised MT-

relations, and call 26’“ the amortised MT—preorder.

When comparing Defs. 9 and 1, it is obvious that 27 C J¢'. While Conds. (3)
and (4) coincide in Defs. 9 and 1, Conds. (1) and (2) do not allow clock tran-
sitions to trail the matching a—transition — just as it is the case in Cond. (1)
in Def. 7. We recall the following full-abstraction result of [17].

Theorem 10 (Full abstraction [17]) The MT-preorder 3 _ . is the largest
precongruence contained in 3™

/'\JO :
We generalise this full-abstraction result here by replacing gg‘t by ggi

Theorem 11 (Generalised full abstraction in TACS™)  The MT-pre-
order 3_, is the largest precongruence contained in 3%

~mt ~0-

The proof of this theorem requires the following proposition, which closes the
gap between Conds. (1) of Defs. 9 and 1.

Proposition 12 In a setting with lazy actions only, Cond. (1) of our defini-
tion of 3, (cf. Def. 1) can be replaced by

(1) P - P implies 3Q', k. Q ~2"5 @ and (P', Q') € Riss.

without changing the preorder, i.e., 3, = 36, when referring to the family of
faster—than relations using Cond. (1°) instead of Cond. (1) as (2})ien-

14



PROOF. The inclusion J; C 2, is obvious, as Cond. (1) is less stringent
than Cond. (1°). For establishing the other inclusion we show that (2,)ien
is an amortised faster-than family in the sense of Cond. (1’). It suffices to
consider the case P 3, @ and P — P’ for some P’ and «, as Conds. (2)—(4)
are the same for both faster-than families.

In this case, the definition of J, yields the existence of @', Q' k,1 such that

o k A/ « o l / / / .
Q— @ —— Qand P2, Q. The commutation lemma, Lemma 8,

! .
then provides a Q" satisfying Q' —= %5 Q" and Q' 2 2. Q" Since J . =
(25 € 29¢, by Thm. 10, and 5 € I, we have Q' J,Q". Further,
by the property &, o< C 2 .. for any m,n € N, we conclude from

P @ 2,Q" that PP 3, Q" Summarising we have established the

. ke+1
existence of a " such that Q - e, — Q" and P’ 3 Q", as desired. O

~i+(k+1)

For the purposes of this section we only consider 56 on processes in TACS'™,
We are now able to prove Thm. 11.

PROOF. [of Thm. 11] Because of Thm. 10 and Prop. 12, it suffices to show
(25 = () According to Thm. 2 this can be done by establishing
()¢ € 2" € - The inclusion :lglt C 2, is obvious since Cond. (2)
of I is stronger than Cond. (2) of 2, for any i € N. The other inclusion
(Qg)c C 25" follows since I™™ =4 {(P, Q) | Cpg|P) I, Cpq[Q] |T1°d.0} is a
family of amortised MT-relations in the sense of Def. 9. Here, Cpg[] =ar
_|px.0.(d.0|z), with d being a distinguished action not in the sorts of P
and . Moreover, II'd.0 denotes i replications of the parallel component d.0;
for notational convenience we will identify some process _|0 with _ in the

remainder of this article. Again, (2;)° € 2§™ is obvious.

We now prove that (2")ien is indeed a family of amortised MT-relations.
Let P 27" Q be arbitrary; we have to check the four conditions of Def. 9:

(1) P P ~
Hence, Cpg[P] —— Cpg[P']. Since P Z**Q we know of some @',k
such that Cpg[Q]|11'd.0 Lki>AQ’ and Cpq[P'] 2}, Q'. By the con-
text’s Construction this implies Q' = Cpg[Q'] |TI'T*d.0, for a Q" with

Q AN — @'. Because of sort(P’) C sort(P) and sort(Q’) C sort(Q), it
also follows that P" 3% Q'.

Ritk
2 Q- Q- |
Hence, CpolQ]|TId.0 —5 CpolQ] —*+ Cpgl@']. Since (i) P 2™ Q,
(ii) d is a distinguished action, and (iii) Cpg[P] has only ¢ credits avail-
able, Cpo[P] must match the d-transitions by Cpo[P](~2>—)" Cpo[P"]
(essentially), where P 2" P" and CpolP"] 2, CpolQ].

15



Since Cpg[P"] has no credits available, the a—transition above must
be matched by an a-step of P” without any preceding or trailing clock
transitions, i.e., Cpg[P"] — Cpg[P’] for some P’ such that P" — P’
and Cpq[P'] 3, CpolQ']. As above we may conclude P 22, P, for
some P' with P' 25" Q".

(3) P25 P

Hence, Cpo[P] = Cpg[P]|d.0 <% Cpg[P’]. Because of P 3M™Q,
the clock transition must be matched by Cpg|Q]|II'd.0 AN Q' for
some Q' and k>1—i such that Cpg[P']|d.0 = Q'. Due to the con-

text’s construction, Q' = Cp[Q"] | TI"*d.0, for some Q" with Q LkAQ”.
For matching the d-transition above we know of the existence of Q”,1
such that Q' otd, Q" and Cpg[P'] ,E',ngkH Q". By the context’s
.. . . : ol ;
definition, this implies Cpo[Q"] | II*d.0 2 CpolQ'] | TTiHHd.0 —L

CpolQ'] | TTHE+=14.0, for some process @' satisfying Q ok Q" o} Q'

and P’ 5?3’1‘+(k+l) Q'. Moreover, k+[ > 1—i since k > 1—i.

1) Q-2 Q. |
Hence, Cpo|Q] |Td.0 —5 CpolQ] —= Cpol@']|d.0 — CpolQ']. As
we have PJ7"™(Q), the i d-transitions must (essentially) be matched by

CPQ[P](LLW Cpo|P"], for some P” which satisfies P —2»' P" and

Cpo[P"] 2, CplQ]. Note that d is a distinguished action and Cpg[P]

has only 7 credits available. The clock transition above can potentially be

matched in two ways:

(a) Cpg[P"] == Cpg|P']]d.0, for a process P’ such that P” <~ P’ and
Cp[P']|d.0 3, CplQ']| d.0. Due to the lack of credits, the final d-

transition above must be matched by Cpg[P']|d.0 4, Cpg|P'] such
that CPQ [Pl] 5’0 CPQ [Ql]

(b) CpolP"|2CpqlQ']]d.0, i.e., the left-hand side decides to do nothing
and thus gain one credit. This credit must be spent immediately
when matching the final d-transition above, since d is a distinguished
action. Hence, Cpg[P"] -2 CpglP']|d.0 - Cpg[P], for some P’
with P” = P’ and Cpg[P'] 2, Cpo|Q’]. Note that Cpg[P"] cannot
engage in more than one clock transition since it has only a single
credit available.

Summarising, we have shown in both cases the existence of some P’ such

that P —2—2 P’ and, because of sort(P’) C sort(P) and sort(Q') C

sort(Q), P/ 2*™ Q. O

Thms. 6 and 11 testify not only to the elegance of the amortised faster—than
preorder as a very intuitive faster—than preorder, but also as a unified starting
point to approaching faster—than relations on processes.

16



4 Full Abstraction in TACS

Having identified the largest precongruence contained in the amortised pre-
order for the sub—calculi TACS"™ and TACS" of TACS, it is natural to
investigate the same issue for the full calculus.

For a calculus with must—clock prefixing and urgent actions, Moller and Tofts
informally argued in [21] that a precongruence over bisimulation—equivalent
processes cannot satisfy a property one would, at first sight, expect from a
faster—than preorder, namely that omitting a must—clock prefix should result
in a faster process. This intuition can be backed up by a more general result
within our setting, which includes must—clock prefixing and urgent actions,
too.

Our result is not just based on a specific property; instead, we have a seman-
tic definition of an intuitive faster—than as the coarsest precongruence refining
the amortised faster—than preorder, and we will show that this precongruence
degrades to a congruence, rather than a proper precongruence. This congru-
ence turns out to be a variant of timed bisimulation, whence we start off by
recalling the standard definition of timed bisimulation [20] first.

Definition 13 (Timed bisimulation) A relation R over P is a timed bisi-
mulation relation if, for all (P,Q) € R and o € A:

(1) P -5 P’ implies 3Q".Q —~ Q' and (P',Q’)
(2) P - P implies 3Q".Q —= Q' and (P, Q') € R.
(3) Q = Q' implies IP'. P = P' and (P',Q’)
(4) Q = Q' implies AP'. P = P' and (P',Q’)

We write P ~; Q if (P,Q) € R for some timed bisimulation relation R, and
call ~; timed bisimulation.

It is obvious that timed bisimulation ~y is an equivalence and that it refines the
amortised faster—than preorder J . However, ~ is not a congruence for TACS
since it is not compositional for parallel composition. To see this, consider
the processes @.0 + b.0 ~; 0.a.0 + b.0. When putting them in parallel with
process 0.0 the relation 3, is no longer preserved since (a.0 4 0.0) | .0 can
engage in an a—transition while (0.a.045.0) | b.0 cannot, as the clock transition
that would enable action a is preempted by the urgent communication on b.
We thus have to refine timed bisimulation and take initial urgent action sets
into account.

Definition 14 (Urgent timed bisimulation) A relation R over P is an
urgent timed bisimulation relation if, for all (P,Q) € R and o € A:

17



(1) PP implies HQ/ Q SN Q/ and <P/’Q’> cR.
(2) P25 P implies U(Q) CU(P) and 3Q".Q = Q' and (P, Q') € R.
(3) Q = Q' implies AP'. P > P' and (P, Q') € R.
(4) Q < Q' implies U(P) CU(Q) and 3P.P - P' and (P',Q') € R.

We write P ~; Q if (P,Q) € R for some urgent timed bisimulation relation R,
and call ~; urgent timed bisimulation.

We have used set inclusion in Conds. (2) and (4) above in analogy to Def. 3. It
is important to note the following: if P —— P’, then Q —— @’ by Cond. (2),
so that Cond. (4) becomes applicable. Therefore, we could just as well require
equality of urgent sets in Conds. (2) and (4). This equality is violated for the
two processes .0 + 0.0 and 0.a.0 + 0.0 considered above, although both can
engage in a clock transition.

Urgent timed bisimulation is the desired refinement of timed bisimulation, as
the following theorem shows.

Theorem 15 (Full abstraction) Urgent timed bisimulation ~, is the largest
congruence contained in ~y.

PROOF. The proof follows line-by—line a similar proof in our previous work
(cf. Theorem 19 in [16]), where we showed such a statement for a notion
of faster—than precongruence (the LV—preorder of Def. 3) and faster—than pre-
order. Their definitions coincide with Defs. 13 and 14, respectively, except that
they leave out Cond. (4). However Cond. (4) is fully symmetric to Cond. (3)
and thus poses no problem for adopting the proof of [16].

We first convince ourselves that ~ is indeed a congruence. All operators of
TACS are as in the setting of [16], with exception of the must—clock and
lazy—action prefix operators, for which we need to show that P ~; () implies
0.P ~; 0. and a.P ~; «.Q). This is obvious, however, since, e.g., in the
first case, the initial clock transition of ¢.P can be matched by the initial
clock transition of ¢.(), and since no action transitions can be performed.

Establishing that ~ is the largest congruence contained in ~; now follows
exactly the lines of [16]. In a nutshell, because ~ is a congruence contained
in ~¢, we have ~; C ~¢. It remains to show that P ~; @), for processes P, () €
P, whenever C[P] ~; C[Q)] for all TACS contexts C[]. To do so, it suffices
to consider the relation

~ =g {(P,Q)| C[P] ~¢ Cr[Q] for some finite £ D sort(P) U sort(Q)} .
Here, Cﬁ[l’] =df T | Hﬁ and Hﬁ =df Mx'(Q'O+Z{I'(ZdeL dO—f—dLZL’) | L Q Z})

Note that H, is well-defined due to the finiteness of £. The actions e and d;

18



and their complements are taken to be ‘fresh’ actions not in the sorts of P
and Q. The proof now proceeds as in [16] by establishing that ~2"* is an urgent
timed bisimulation relation. O

We can now state and prove the main result of this section.

Theorem 16 (Full abstraction in TACS) Urgent timed bisimulation ~,
is the largest (pre-)congruence contained in 3.

PROOF. By Thms. 15 and 2, it is sufficient to show that 2° C~ C I

~0 ~0°

Since the inclusion ~; C I immediately follows from Defs. 13 and 1, it re-

~0
mains to show that 58 C ~;. To do so, we prove that the relation ~*"* =4
{(P,Q) | Crq[P] 2, CrqlQl}, where Cpol] =ar (- Hpq) \ sort(PQ), Hpq =at
BT Paesort(p@) &-(T-T + dg.7) + 7.(d.v + o.1.7), and sort(PQ) =4 sort(P) U
sort(Q) with d,, d ¢ sort(PQ), is a timed bisimulation relation. (Again,(J,)¢ C

~*X is obvious.) Let P ~*" () be arbitrary; we consider the following cases:

(1) P P
Hence, CPQ[P] RN (Pl ’ (I'HPQ +QZQ'HPQ)) \ SOI’t(PQ) SN CPQ[P/].

Since Cpq[P] 2, CprolQ)], there exist Q" k,1 such that Cpg[Q] ok,

21 Q" and (P'| (1. Hpq + dy-Hp)) \ sort(PQ) 2y, ,.,Q"- Due to the
placement of urgent 7’s in the context and the fact that d, is a distin-

guished action, we conclude k=I(=0 and Q % @', for some Q' with

@” = (Q/ | (I-HPQ + dg.HpQ)) \SOFt(PQ).
For matching the 7-transition of (P'|(r.Hpg + d,.Hpg)) \ sort(PQ)

o . ~ F ~ K
above we similarly know of the existence of Q’, k', I’ such that Q" -~

L @’ and Cpg[P'] 2, Q’ . Again, because of the placement of urgent 7’s
in the context and the fact that d, is a distinguished action, we may infer
k'=I'=0 and Q' = Cpe[Q'].

Further, Cpq[P'] 2, Cpq|Q'] implies Cpq [P'] 3, Cpigr[Q'], when con-
sidering sort(P’) C sort(P), sort(Q’) C sort(Q), and the construction of
the context. Note that additional summands in Hpg cannot influence
transitions due to the restriction. Hence, we have shown the existence of
a Q' satisfying Q@ —— Q' and P’ ~"* (',

(2) P P

Hence, Cpg[P] —— Cpg[P']. Since the context has an urgent 7 enabled
and since d and the d, are distinguished actions, the premise P ~** Q)
implies that Cpg[Q] — Cpg|Q'] and Cpo[P'] J, CpolQ'], for some Q'
with @ —— @Q'. As above, Cpg[P'] 3, CpolQ'] implies P' ~* Q.

(3) P> P

Hence by our operational rules, Cpg[P] — (P |(d.Hpg + 0.7.Hpg)) \

sort(PQ) = (P'|(d.-Hpq + 7.Hpg)) \ sort(PQ) —— Cpg[P'].

19



Due to Cpq[P] 2, Cpq|Q] we know of the existence of Q" k, 1 satisfying

CrolQ) =" ' Q" and (P|(d-Hpo+o.7.Hpg))\sort(PQ) g, 0y Q-

Taking into account the urgent 7’s initially enabled by the context and

after the context’s o-prefix (and action d), we may infer £ = 0 and

[ € {0, 1}, respectively. For matching the above second step, i.e., the

clock—transition, we distinguish the cases [ =1 and [ = 0.

(a) Case | = 1: Here, Q - @ and Q" = (Q'|(d.Hpg + 7.Hpg)) \
sort(PQ) for some Q'

While Q" cannot match the second step of the left hand-side, i.e.,
the clock transition, there is 1 credit available. Hence, (P’ | (d.Hpg +
T.Hpq)) \ sort(PQ) 3, (@' | (d-Hpq + T.Hpq)) \ sort(PQ).

(b) Case | = 0: Here, Q" = (Q | (d.Hpo + 0.7.Hpg)) \ sort(PQ).

The matching of the clock transition of th/% left—hand side implies
the existence of Q" and " such that Q" o Q" and (P' | (d.Hpg+
T.Hpq)) \sort(PQ) 2, Q" Since the context has an urgent 7-action
enabled after performing its o—prefix we may further conclude I = 1.
Hence, Q@ = Q' and Q" = (Q' | (d.Hpo + 7.Hpg)) \ sort(PQ) for a
suitable Q" and (P'|(d.Hpg + 1.Hpq)) \ sort(PQ) 2, (Q"| (d.Hpg +
T.Hpg)) \ sort(PQ).

When matching the third step above, i.e., the second T—transition,
and since (P'|(d.Hpg +1.Hpq)) \ sort(PQ) 2, (Q"| (d.-Hpg + 7.Hpg)) \
sort(PQ), we may infer Q', K, ' such that (Q'|(d. Hpo+1.Hpg))\sort(PQ)

o N, ot Q' and Cpq[P'] 2, Q'. Note that the placement of urgent
7’s in the context necessarily implies k'=I'=0, whence Q' = Cpg|@'] due
to action d. Summarising, we have established the existence of a )’ such
that Q -2 Q" and P’ ~** (',

4) Q — Q"

Hence, CpglQ] — (Q'| (z.Hpg + d,-Hpg)) \ sort(PQ) — CpqlQ'].
Since Cpg[P] 2,Cpo[Q] and thus no credits are available to Cpg[FP],
we have Cpg[P] —— P” and P" 20 (Q'|(z.Hpg + d,-Hpq)) \ sort(PQ).
Because @’s move to ) enables the distinguished action d, within the
context, we may further infer P” = (P'| (. Hpq + d,.Hpg)) \ sort(PQ),
for some P’ with P -+ P’.

The second step of the right-hand side, i.e., the 7—transition, can
only be matched as follows: P” - P’ and P’ 2o CpolQ’], where P =
CpolP']. This is due to the fact that no credits are available to P” and

that d, is a distinguished action. Summarising, we have established the
existence of a P’ such that P - P’ and P’ ~*™ ()'.
(5) Q — Q"
Hence, Cpg|Q] —— CpqlQ']. Because Cpg[P] 2, Cpo|Q), i.e., no cred-
its are available to C'pg[P], and because d, d,, are distinguished actions, we

know of the existence of some P’ satisfying Cpg[P] —— P, P’ 2, CpolQ'],

20



and P' = Cpg[P] for some P’ such that P —— P'. Thus, P’ ~** @',

too.

(6) @ — Q"

Hence by our operational rules, Cpg|Q] — (Q | (d.Hpg + 0.7.Hpg)) \
sort(PQ) ~ (Q'| (d-Hpg + 7. Hpq)) \ s0rt(PQ) — CrolQ)].

Since Cpg[P] 2, Cpq|Q)], i-e., Cpg[P] has no credits available, we know
of the existence of P” such that Cpg[P] — P and P" 2, (Q(d.-Hpo+
0.7.Hpg))\sort(PQ). Moreover, P" = (P | (d.Hpg+0.7.Hpq))\sort(PQ)
since d is a distinguished action.

For matching the second step of Cpg[Q)] above, i.e., the clock transition,
the following two possibilities arise:

(a) The left-hand side process does nothing and gains one credit, whence
P" =4 (P|(d-Hpo+o.1.Hpg))\sort(PQ) 2, (Q' | (d-Hpo+1.Hpq))\
sort(PQ).

When matching the third step of Cpg[Q)] above and noting that d
is a distinguished action and that one credit is available, we obtain
some P’ satisfying P = - P', P' 3, CpqlQ)], and P' = Cpg[P],
for a P’ such that P -7 P'.

(b) The left-hand side engages in a clock transition, too, whence P” —Z»
P" = (P'|(d.Hpg+1.Hpg)) \sort(PQ), for a P’ such that P -2+ P’.

Matching the third step of Cpg[Q@] above and observing that the
left-hand side has still no credit available, there must exist a P
satisfying P” - P’ P’ 2, CpqlQ], and P' = Cpg|P'], for some P’
with P -2 P’

Summarising, we have established in both cases the existence of a P’ such

that P -2 P’ and P’ ~*% /. O

Hence, not all faster—than settings on the basis of the amortised faster—than
preorder admit a faster-than precongruence that is a proper precongruence.
As shown for the full TACS calculus, it is possible that the obtained fully—
abstract precongruence degrades to a congruence.

5 Discussion

The aim of this section is to investigate when exactly the amortised faster—than
preorder, when closed under all contexts, collapses from a proper precongru-
ence to a congruence.

We have shown in the TACS sub-calculus with only must—clock prefixing
and lazy actions (cf. Sec. 3.1) and in the sub—calculus with only can—clock
prefixing and urgent actions (cf. Sec. 3.2) that indeed proper precongruences

21



are obtained: the MT—preorder and the LV-preorder, respectively. However,
when combining both clock prefixes as well as lazy and urgent actions, then
the result is a congruence: urgent timed bisimulation (cf. Sec. 4). We desire
to explore where exactly this borderline lies, by characterising the largest
precongruence contained in the amortised faster—than preorder for other com-
binations of can—/must—clock prefixes and urgent/lazy actions. While some of
the resulting settings might not appear natural, others are practically relevant,
and this will be pointed out when analysing each combination in turn.

5.1  Can—Clock Prefizing and Urgent+Lazy Actions

Here we find ourselves in the sub-calculus TACS™ investigated in Sec. 3.1,
where additionally lazy actions may be present. Lazy actions might be used
for modelling the potential of errors: many errors in practice can occur at any
moment and thus cannot be associated with maximal delays.

Corollary 17 (Full-abstraction in the can/urgent+lazy setting)
The LV-preorder 3, 1is the largest precongruence contained in 3, when con-
sidering TACS processes with can—clock prefixes only.

Hence, Thm. 6 of Sec. 3.1 remains valid in the presence of lazy actions. This
can be seen by checking the proof of Thm. 6 as well as all the proofs of [16]
on which it depends.

5.2 Must— and Can—Clock Prefizing and Lazy Actions

The setting here is the one of TACSY, where can—clock prefixes are added.
This does not change the result we obtained for the TACS" setting (cf.
Thm. 11 in Sec. 3.2), when extending the definition of the MT-preorder J

(cf. Def. 7) from processes in P to the class of processes considered here.

Theorem 18 (Full abstraction in the must+can/lazy setting)  The
MT-preorder 2, is the largest precongruence contained in 2., when consid-
ering TACS processes with lazy actions only.

This statement can be deduced by inspecting the proofs of Sec. 3.2, i.e.,
the proof of Thm. 11 and the proofs of the underlying statements adopted
from [17], in the presence of g—prefixes. The only parts that are not straight-
forward concern checking whether the MT—preorder 2 . is also compositional
for can—clock prefixes and whether the commutation lemma, Lemma 8, still
holds. To do so we first need to adapt the syntactic faster—than preorder >
of [17] by adding the clause P > o.P.

22



Definition 19 (Syntactic Faster—Than Preorder) Relation = C P x P
is defined as the smallest relation satisfying the following properties, for all

P, P.Q,Q €P.

Always: (1

P =P, Q = Q:

P>~P (2) (a) P> o.P; (b)P>a.P
3) P'|Q' > P|Q (4) P+Q = P+Q
5) PP\L>=P\L (6) P'[f] >~ P[f]

(
(
(
P~ P, x guarded: (7) P'[uz. P/x] > px. P

)
)
)
)

This syntactic faster—than relation possesses the following important property
which is adopted from Lemma 5(2) of the full version of [17] and also used in
the next section.

Lemma 20 For any P, P', if P -~ P’ then P' = P.

The proof of this lemma is by a straightforward induction on the structure
of P. Also the other parts of Lemma 5 of the full version of [17] hold under the
modified syntactic faster-than preorder, in particular P’ = P implies P’ 2 P
for processes P', P in the TACS fragment we consider in this subsection. For
the proof of Lemma 5 it is important that these processes satisfy the laziness
property, i.e., each of them can perform a time step. We can now prove that
the MT—preorder is compositional for can—clock prefixes, in the TACS sub—

calculus that is restricted to lazy actions only.

Lemma 21 Let P,Q be TACS processes with lazy actions only. Then P 3 Q
implies 0. P gmtg.Q.

PROQOF. The only nontrivial case concerns ¢. P -2, P’ for some action « and
process P. By our operational rules we know that this can only be the case if

. . o k
P % P’ Since P 2. Q, there exists some ', P, k such that @) — Q'

k k
P’ =" P" and P"3_ Q' Hence, 0.Q — o, Q'. Further, due to the

laziness property, there exists a process P” such that P” 2= P". As seen

above (cf. Lemma 20 and the property that R’ > R implies R' J . R for

any processes R', R), this implies P"” 3 P". Hence, P’ o M pm and, by

transitivity, P J Q. O

Moreover, since the correctness of the commutation lemma is only based on
Lemma 5 of the full version of [17], the laziness property as well as the time—
determinism property, the commutation lemma obviously remains valid even
in the presence of can—clock prefixing.

23



5.8  Can—Clock Prefiring and Lazy Actions

This combination is one that does not appear to be intuitive. If every action
can delay its execution, additional potential delays specified by can—clock pre-
fixes seem irrelevant and can be omitted (cf. Prop. 22). Further, if every delay
specified by a clock prefix can indeed be omitted, then it appears that delays
are not relevant at all and may thus be safely ignored (cf. Thm. 24).

Proposition 22 P ~; g.P for all TACS processes P with can—clock prefixes
and lazy actions only.

PROOF. Since P > ¢.P according to Def. 19(2b), it is sufficient to show
that >, when restricted to processes, is a timed bisimulation relation. This is
done by induction on the length of inference over >. The only interesting case
concerns P = o.P:

o.P - P’ implies P - P’ by Rule (uPre) and P’ = P’ by Def. 19(1).
P - P"implies ¢.P = P by Rule (tuPre) and P’ = P by Lemma 20.
o.P %+ P. Because of the laziness property, there exists some P’ with
P %5 P'. By applying Lemma 20 we obtain P’ = P.

All other cases only involve a straightforward application of the induction
hypothesis. O

Because of the irrelevance of timed behaviour, timed bisimulation ~; coincides
with standard bisimulation ~ [19] — where clock transitions are ignored —
in the setting considered in this section.

Lemma 23 ~ = ~; on TACS processes P with can—clock prefizes and lazy
actions only.

PROOF. The proof of the non—trivial inclusion “P ~ () implies P ~; Q)7 is
straightforward when first stripping the processes P, () of their o—prefixes while
preserving timed bisimulation, and thus standard bisimulation, according to
Prop. 22. Note that this stripping can be done along the terms’ structure
since timed bisimulation is compositional in the fragment of TACS studied
in this section: timed bisimulation and urgent timed bisimulation coincide in
the absence of urgent actions. O

24



As expected, the amortised faster—than preorder, when closed under all con-
texts, degrades to standard bisimulation in this setting.

Theorem 24 (Full abstraction in the can/lazy setting) Standard bisi-
mulation ~ 1is the largest precongruence contained in J,, when considering
TACS processes with can—clock prefizes and lazy actions only.

PROOF. The inclusion ~ C ,58 is obvious since ~ = ~;C J and since

~ = ~ is a (pre-)congruence. To prove the inverse inclusion J5 C ~ we
establish the stronger statement J; C ~.

Let P 2,Q. Because of Prop. 22 we can remove all g-—prefixes of P and Q
to obtain P ~; P and Q ~; Q, respectively, implying }/550 Q. Now, P ~; Q
follows since U;en 2; is a timed bisimulation relation on processes without
can—clock prefixes and only lazy actions; this property is straightforward since
time steps are always possible and do not change process terms other than
unfolding recursion.

Summarising, we have P ~y P~y Q ~; Q, ie., P~ Q. Lemma 23 now yields
P ~ (@), as desired. O

To conclude, it should be noted that Prop. 22 does not hold in the presence
of must—clock prefixes. For example, ¢.0.a.0 -~ 0.a.0 and 0.a.0 -% «.0, but
obviously ¢.a.0 ¢ a.0.

5.4 Must—Clock Prefizing and Urgent Actions, €& More

For the full algebra TACS, we have shown in Sec. 4 that the largest pre-
congruence contained in the amortised faster-than preorder is urgent timed
bisimulation (cf. Thm. 16). Full TACS combines must— and can—clock pre-
fixing with lazy and urgent actions. When leaving out either lazy actions,
or can—clock prefixes, or both, the result remains valid, as can be checked
by inspecting the proofs of Sec. 4. Essentially, the reason is that the context
constructed within this proof uses neither lazy actions nor can—clock prefixes.

Most interesting is the case when we are left with must—clock prefixing and ur-
gent actions only. This setting coincides with the one of Hennessy and Regan’s
well-known Timed Process Language [13], TPL, in terms of both syntax and
operational semantics, when leaving out TPL’s timeout operator; we refer to
this calculus as TPL™. It is important to note that, for TPL™, urgent timed
bisimulation is the same as timed bisimulation; this is because all actions

25



are urgent, and the bisimulation conditions on actions imply that equivalent
processes have the same initial (urgent) actions.

However, when adding either can—clock prefixing or lazy actions to TPL™
setting, urgent timed bisimulation needs to be considered. Indeed, both of
these extensions lead to a more expressive calculus than TPL™. For example,
the process ¢.a.0 in the setting must+can—clock prefixing and urgent actions
cannot be expressed in TPL™.

Proof. Assume the contrary, i.e., there exists a process P in TPL™ such
that P ~; ¢.a.0. Because ¢.a4.0 ~; a.0 4+ 0.a.0 and ~; C ~, we may infer
P ~¢ a.0 + 0.a.0. The processes on both sides of ~; are actually processes
in TPL™, for which ~; = ~y. Hence, ¢.a.0 ~; @.0 + 0.a.0, which is a
contradiction since U(c.a.0) = # {a} =U(a.0 + 0.a.0). O

In a similar fashion one can show that a.0, which is a valid process in the
must—clock prefixing and urgent+lazy—actions setting, is not expressible in
TPL™.

We conclude this section by noting that the full TPL language [13], enriched
with can—clock prefixing, might be of interest in itself. This is because TPL
with can—clock prefixing is more expressive than TPL. For example, the pro-
cess ¢.7.P can engage in both a clock transition and a 7-transition. This
semantic behaviour is incompatible with the maximal-progress property in
TPL, bearing in mind that every action in TPL is urgent.

6 Related Work

Relatively little work has been published on theories that relate processes with
respect to speed. This is somewhat surprising, given the wealth of literature
on timed process algebras [6] and the importance of reasoning about time
efficiency in system design [18].

Early research on process efficiency compares untimed CCS-like terms by
counting internal actions either within a testing—based [22] or a bisimulation—
based [3,4] setting. Due to interleaving, for example (7.a.0|7.@.b.0) \ {a}
is considered to be as efficient as 7.7.7.6.0, whereas (0.a.0|0.a.b.0) \ {a}
((g.a.0]g.a.b.0)\{a}) is strictly faster than 0.0.7.0.0 (¢.c.7.b.0) in our setting.

The most closely related research to ours is obviously the one by Moller and
Tofts on processes equipped with lower time bounds [21] and our own on pro-
cesses equipped with upper time bounds [16]. The work of Moller and Tofts
has recently been revisited by us [17] and completed by adding an axiomati-

26



sation for finite processes, a full-abstraction result, and a “weak” variant of
the MT—preorder that abstracts from the unobservable action 7. Our work
on upper time bounds [16] features similar results for the LV-preorder. In
both papers [17,16], the chosen reference preorders for the full-abstraction
results are less abstract than the amortised faster—than preorder advocated
here. Although a couple of these reference preorders borrowed some idea of
amortisation (cf. Defs. 4 and 9), they were somewhat tweaked to fit the LV—
preorder and the MT-preorder, respectively. Thus, Thms. 6 and 11 are indeed
significant generalisations of the corresponding theorems in [16] and in [17]
(cf. Thms. 5 and 10), respectively.

Most other published work on faster-than relations focuses on settings with
upper time bounds and on preorders based on De Nicola and Hennessy’s
testing theory [11]. Initially, research was conducted within the setting of
Petri nets [24,25], and later for the Theoretical-CSP—style process algebra
PAFAS [9]. An attractive feature when adopting testing semantics is a funda-
mental result stating that the considered faster-than testing preorder based
on continuous-time semantics coincides with the analogous testing preorder
based on discrete—time semantics [25]. It remains to be seen whether a similar
result holds for our bisimulation—based approach.

Corradini et al. [10] have introduced the ill-timed-but-well-caused approach
for relating processes with respect to speed [2,12]. This approach allows system
components to attach local time stamps to actions. However, as a byproduct
of interleaving semantics, local time stamps may decrease within action se-
quences exhibited by concurrent processes. The presence of these “ill-timed”
runs makes it difficult to relate the faster—than preorder of Corradini et al. to
ours.

Last, but not least, it must be mentioned that our notion of amortisation
and our amortised faster—than preorder have recently been adapted by Kiehn
and Arun—Kumar [15] to a general setting of labelled transition systems in
which actions are associated with costs. In our setting of speed, the cost of an
action is simply the time it can be delayed. However, our amortised faster—
than preorder is not defined on labelled transition systems but on processes.
This is important for amortised preorders in timed settings since clock ticks of
parallel processes are not interleaved but truly concurrent (cf. Rule (tCom)).
In this sense, our work on amortised faster—than preorders is not simply an
instance of Kiehn and Arun-Kumar’s general setting, as is claimed in [15].

27



7 Conclusions and Future Work

In this article we proposed a general amortised faster-than preorder for uni-
fying bisimulation—based process theories [21,17,16] that relate asynchronous
processes with respect to speed. Our amortised preorder ensures that a faster
process must execute each action no later than the related slower process
does, while both processes must be functionally equivalent in the sense of
strong bisimulation [19].

Since the amortised faster-than preorder is normally not closed under all sys-
tem contexts, we characterised the largest precongruences contained in it for
a range of settings. The chosen range is spanned by a two—dimensional space,
with one axis indicating whether only must—clock prefixes, only can—clock
prefixes, or both are permitted, and the other axis determining whether only
lazy actions, only urgent actions, or both kinds of actions are available. In
this space, the settings of Moller/Tofts [21], which is concerned with lower
time bounds, and of Liittgen/Vogler [16], which is concerned with upper time
bounds, can be recognised as “must/lazy” and “can/urgent” combinations, re-
spectively. Since all reference preorders chosen in [17,16] are less abstract than
the amortised faster—than preorder, the results of this article strengthen the
ones obtained for both the Moller/Tofts and the Liittgen/Vogler approach.
The following table summarises our findings for each combination of clock
prefix and action type, i.e., each entry identifies the behavioural relation that
characterises the largest precongruence contained in the amortised faster—than
preorder.

Lazy Urgent Lazy+Urgent

Must MT-preorder | Timed bisimulation | Urgent timed bisim.

Can Bisim. LV-preorder LV-preorder

Must+Can | MT-preorder | Urgent timed bisim. | Urgent timed bisim.

The table shows that the amortised faster—than relation degrades to timed
bisimulation as soon as must—clock prefixes and urgent actions come together.
In this case, which includes the established process algebra TPL [13], one may
express time intervals by equipping actions with both lower and upper time
bounds. Moreover, when extending the Moller/Tofts approach by can—clock
prefixing or the Liittgen/Vogler approach by lazy actions, the MT—preorder
and the LV-preorder, respectively, remain fully—abstract.

Future work shall investigate decision procedures for the MT—preorder and

the LV—preorder, respectively, in order for them to be implemented in auto-
mated verification tools, such as the Concurrency Workbench NC' [8]. This

28



is of particular interest since bisimulation semantics lends itself to more ef-
ficient algorithms than testing semantics [1], bearing in mind that most re-
lated work on faster—than relations had focused on testing—based, rather than
bisimulation—based, preorders.

References

[1] S. Abramsky. Observation equivalence as a testing equivalence. T'CS, 53:225—
241, 1987.

[2] L. Aceto and D. Murphy. Timing and causality in process algebra. Acta Inform.,
33(4):317-350, 1996.

[3] S. Arun-Kumar and M.C.B. Hennessy. An efficiency preorder for processes.
Acta Inform., 29(8):737-760, 1992.

[4] S. Arun-Kumar and V. Natarajan. Conformance: A precongruence close to
bisimilarity. In STRICT ’95, Workshops in Comp., pages 55-68. Springer-
Verlag, 1995.

[5] E. Badouel and P. Darondeau. On guarded recursion. 7T'CS, 82(2):403-408,
1991.

[6] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Monographs
in Theoret. Comp. Sc. Springer-Verlag, 2002.

[7] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.
Elsevier Science, 2001.

[8] R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In CAV ’96,
volume 1102 of LNCS, pages 394-397. Springer-Verlag, 1996.

[9] F. Corradini, M. Di Berardini, and W. Vogler. PAFAS at work: Comparing the
worst-case efficiency of three buffer implementations. In APAQS 2001, pages
231-240. IEEE Computer Society Press, 2001.

[10] F. Corradini, R. Gorrieri, and M. Roccetti. Performance preorder and
competitive equivalence. Acta Inform., 34(11):805-835, 1997.

[11] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. T'CS,
34(1-2):83-133, 1984.

[12] R. Gorrieri, M. Roccetti, and E. Stancampiano. A theory of processes with
durational actions. T'CS, 140(1):73-94, 1995.

[13] M.C.B. Hennessy and T. Regan. A process algebra for timed systems. Inform.
and Comp., 117(2):221-239, 1995.

[14] L. Jenner and W. Vogler. Fast asynchronous systems in dense time. TCS,
254(1-2):379-422, 2001.

29



[15] A. Kiehn and S. Arun-Kumar. Amortised bisimulations. In FORTE 2005,
LNCS. Springer-Verlag, 2005. Accepted for publication.

[16] G. Liittgen and W. Vogler. Bisimulation on speed: Worst—case efficiency.
Inform. and Comp., 191(2):105-144, 2004.

[17] G. Liittgen and W. Vogler. Bisimulation on speed: Lower time bounds. Theoret.
Informatics Appl., 39:587-618, 2005. Special issue on FoSSaCS 2004.

[18] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
[19] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[20] F. Moller and C. Tofts. A temporal calculus of communicating systems. In
CONCUR ’90, volume 458 of LNCS, pages 401-415. Springer-Verlag, 1990.

[21] F. Moller and C. Tofts. Relating processes with respect to speed. In
CONCUR ’91, volume 527 of LNCS, pages 424-438. Springer-Verlag, 1991.

[22] V. Natarajan and R. Cleaveland. An algebraic theory of process efficiency. In
LICS 96, pages 63-72. IEEE Computer Society Press, 1996.

[23] C. Verhoef. A congruence theorem for structured operational semantics with
predicates and negative premises. Nordic J. of Comp., 2(2):274-302, 1995.

[24] W. Vogler. Efficiency of asynchronous systems, read arcs, and the MUTEX-
problem. T'CS, 275(1-2):589-631, 2002.

[25] W. Vogler. Faster asynchronous systems. Inform. and Comp., 184(2):311-342,
2003.

30



