
Conjunction on Processes:

Full-Abstraction via Ready-Tree Semantics ⋆

Gerald Lüttgen 1

Department of Computer Science, University of York, York YO10 5DD, UK

Walter Vogler 2

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany

Abstract

A key problem in mixing operational (e.g., process-algebraic) and declarative (e.g.,
logical) styles of specification is how to deal with inconsistencies arising when com-
posing processes under conjunction. This article introduces a conjunction operator
on labelled transition systems capturing the basic intuition of “a and b = false”,
and considers a naive preorder that demands that an inconsistent specification can
only be refined by an inconsistent implementation.

The main body of the article is concerned with characterising the largest pre-
congruence contained in the naive preorder. This characterisation will be based on
what we call ready-tree semantics, which is a variant of path-based possible-worlds
semantics. We prove that the induced ready-tree preorder is compositional and
fully-abstract, and that the conjunction operator indeed reflects conjunction.

The article’s results provide a foundation for, and an important step towards a
unified framework that allows one to freely mix operators from process algebras and
linear-time temporal logics.

Key words: Labelled transition system, conjunction, consistency preorder,
ready-tree semantics, ready-tree preorder, full abstraction.

⋆ An extended abstract appeared in L. Aceto and A. Ingólfsdóttir, eds., Intl. Conf.

on Foundations of Software Science and Computation Structures (FOSSACS 2006),
vol. 3921 of Lecture Notes in Computer Science, pp. 261–276, Vienna, Austria, 2006.
Springer-Verlag.
1 Research support was partially provided by the NSF under grant CCR-9988489.
2 Corresponding author. Email: walter.vogler@informatik.uni-augsburg.de; phone:
+49 821 598-2120; fax: +49 821 598-2175

Preprint submitted to Elsevier Science 24 October 2006

1 Introduction

Process algebra [1] and temporal logic [2] are two popular approaches to for-
mally specifying and reasoning about reactive systems. The process-algebraic
paradigm is founded on notions of refinement, where one typically formulates
a system specification and its implementation in the same notation and then
proves using compositional reasoning that the latter refines the former. The
underlying semantics is often given operationally, and refinement relations
are formalised as precongruences. In contrast, the temporal-logic paradigm is
based on the use of temporal logics to formulate specifications abstractly, with
implementations being denoted in an operational notation. One then verifies
a system by establishing that it is a model of its specification.

Recently, two papers have been published aimed at marrying process algebras
and temporal logics [3,4]. While the first paper introduces a semantic frame-
work based on Büchi automata, the second paper considers labelled transition
systems augmented with an “unimplementability predicate”. This predicate
captures inconsistencies arising when composing processes conjunctively; e.g.,
the composition a ∧ b is contradictory since a run of a process cannot begin
with both actions a and b. Note that one cannot simply interpret conjunction
as synchronous composition and ignore inconsistencies. Otherwise, a∧b would
be deemed equivalent to the deadlock process 0. Hence, 0 would implement
a ∧ b, although it neither implements a or b in any deadlock-sensitive imple-
mentation relation. The frameworks in [3,4] are equipped with a refinement
preorder based on De Nicola and Hennessy’s must-testing preorder [5]. How-
ever, the results obtained in [3,4] are unsatisfactory: the refinement preorder
in [3] is not a precongruence, while the ∧-operator in [4] is not conjunction
with respect to the studied precongruence ⊑, i.e., it does not satisfy the law
p ∧ q ⊑ r if and only if p ⊑ r and q ⊑ r.

This article solves the deficiencies of [3,4] within a simple setting of labelled
transition systems in which a state represents either an external (non-determ-
inistic) or internal (disjunctive) choice. Moreover, states that are vacuously
true or false are tagged accordingly. The tagging of false states, or inconsis-
tent states, is given by an inductive inconsistency predicate that is defined very
similar but subtly different to the unimplementability predicate of [4]. We then
equip our setting with two operators: the conjunction operator ∧ is in essence
a synchronous composition on observable actions and an interleaving prod-
uct on the unobservable action τ , but additionally captures inconsistencies;
the disjunction operator ∨ simply resembles the process-algebraic operator of
internal choice.

Our variant of labelled transition systems gives rise to a naive refinement pre-
order ⊑F requiring that an inconsistent specification cannot be refined except

2

by an inconsistent implementation. We characterise the consistency preorder,
i.e., the largest precongruence contained in ⊑F when conjunctively closing un-
der all contexts. To do so, we adapt van Glabbeek’s path-based possible-worlds
semantics [6] which in turn is motivated by the possible-worlds semantics of
Veglioni and De Nicola [7]. We call the adapted semantics ready-tree seman-
tics which is – at least when disallowing divergent behaviour – finer than both
must-testing semantics [5] and ready-trace semantics [8], but coarser than
ready simulation [9]. The resulting ready-tree preorder ⊏

∼ is not only compo-
sitional for ∧ and ∨ and fully-abstract with respect to ⊑F , but also possesses
several other desired properties. In particular, we prove that ∧ (∨) is indeed
conjunction (disjunction) relative to ⊏

∼ , and that ∧ and ∨ satisfy the expected
boolean laws, such as the distributivity laws.

Our results are a significant first step towards the goal of developing a uniform
calculus in which one can freely mix process-algebraic and temporal-logic op-
erators. This will give engineers powerful tools to model system components
at different levels of abstraction and to impose logical constraints on the exe-
cution behaviour of components. The proposed ready-tree preorder will allow
engineers to step-wise and component-wise refine systems by trading off logical
content for operational content.

Organisation

The next section presents our setting of labelled transition systems augmented
with true and false predicates, together with a conjunction and a disjunction
operator. Section 3 defines ready-tree semantics, addresses expressiveness is-
sues of several ready-tree variants and introduces the ready-tree preorder. Our
compositionality and full-abstraction results are proved in Section 4. The re-
lation of our ready-tree preorder to established preorders is made precise in
Section 5. Our framework is then extended by a parallel composition opera-
tor in Section 6, in which it is also applied to the structured specification and
refinement-based design of mode logics of flight guidance systems. Finally, Sec-
tion 7 discusses our results in light of related work, while Section 8 presents
our conclusions and suggests directions for future research.

2 Labelled Transition Systems & Conjunction

This section first introduces our process-algebraic setting and particularly con-
junctive composition informally, discusses semantic choices and their implica-
tions, and finally gives a formal account of our framework.

3

2.1 Motivation

Our setting models processes as labelled transition systems, which may be
composed conjunctively and disjunctively. As usual in process algebra, tran-
sition labels are actions taken from some alphabet A = {a, b, . . .}. When an
action a is offered by the environment and the process under consideration is
in a state having one or more outgoing a-transitions, the process must choose
and perform one of them. If there is no outgoing a-transition, then the pro-
cess stays in its state, at least in classical process-algebraic frameworks where
the composition between a process and its environment is modelled using
some parallel operator. However, in a conjunctive setting we wish to mark
the composed state between process and environment as inconsistent, if the
environment offers an action that the process cannot perform, or vice versa.
Hence, taking ordinary synchronous composition as operator for conjunction
is insufficient.

∧ ba =
F

a b

qp
q'p'

r

∧a

p

=
c

∧
a

b

a

= a

F

(F)

Fig. 1. Basic intuition behind conjunctive composition.

We illustrate this intuition behind our conjunction operator ∧ and its impli-
cations by the example labelled transition systems of Fig. 1. First, consider
the processes p, q and r. Process p and q specify that exactly action a and
respectively action b is offered initially. Similarly, process r specifies that a
and b are offered initially. From this perspective, p ∧ q as well as p ∧ r are
inconsistent and should be tagged as such. Formally, our labelled transition
systems will be augmented by an inconsistency predicate F , so that p ∧ q,
p ∧ r ∈ F in our example. We also refer to inconsistent states as false-states.

Now consider the conjunction p′ ∧ q′ shown on the right in Fig. 1. Since both
conjuncts require action a to be performed, p′∧q′ should have an a-transition.
From the preceding discussion, this transition should lead to a false-state.
No implementable process can meet these requirements of being able to per-
form a and being inconsistent afterwards. Thus, our inconsistency predicate
will propagate backwards to the conjunction itself, as indicated in Fig. 1.

F

a b

(F)

F

a ba

τ

b

τ

F

Fig. 2. Backward propagation of inconsistencies.

4

Fig. 2 shows more intricate examples of backward propagation. The inconsis-
tency of the target state of the a-transition of the process on the left propagates
backwards to its source state. This is the case although the source state is able
to offer a transition leading to a consistent state. However, that transition can
only be taken if the environment offers action b. The process is forced into the
inconsistency when the environment offers action a.

The situation is different for the process in the middle, which has an additional
a-transition leading to a consistent state. Here, the process is consistent, as it
can choose to execute this new a-transition and thus avoid to enter a false-
state. In fact, this choice can be viewed as a disjunction between the two
a-branches. As an aside, note that in [4] the design decision was to consider a
process already as inconsistent if some a-derivative is. While there might be an
intuitive justification for that, it led to a setting where the implied conjunction
operator did not reflect conjunction for the studied refinement preorder, i.e.,
where Thm. 21(1) did not hold.

Disjunction can be made explicit by using the classical internal-choice op-
erator. This operator may as usual be expressed by employing the special,
unobservable action τ /∈ A as shown on the right in Fig. 2. Hence, we may
identify the internal-choice operator with the disjunction operator ∨ desired
in our setting. Moreover, a disjunction p ∨ q is inconsistent if both p and q
are false-states. In particular, the process on the right in Fig. 2 will represent
false∨q in our approach, with q from Fig. 1, which clearly should be consistent.

2.2 Formalisation

For notational convenience we denote A∪{τ} by Aτ and use α, β, . . . as repre-
sentatives of Aτ . We start off by defining our notion of labelled transition sys-
tem (LTS). The LTSs considered here are augmented with a false-predicate F
on states, as discussed above, and dually with a true-predicate T . A state
in F represents inconsistent, empty behaviour, while a state in T represents
completely underspecified, arbitrary behaviour.

Formally, an LTS is a quadruple 〈P,−→, T, F 〉, where P is the set of processes
(states), −→⊆ P×Aτ×P is the transition relation, and T ⊆ P and F ⊆ P are
the true-predicate and false-predicate, respectively. We write p

α
−→ p′ instead

of 〈p, α, p′〉 ∈−→, p
α

−→ instead of ∃p′ ∈ P. p
α

−→ p′, and p −→ instead of
∃p′ ∈ P, α ∈ Aτ . p

α
−→ p′. When p

α
−→ p′, we say that process p can perform

an α-step to p′, and we call p′ an α-derivative of p. We also require an LTS
to satisfy the following τ -purity condition: p

τ
−→ implies 6 ∃a ∈ A. p

a
−→,

for all p ∈ P . Hence, each process represents either an external or internal
(disjunctive) choice between its outgoing transitions. This restriction turns

5

out to be technically convenient, and we leave exploring the consequences of
lifting it for future work.

The LTSs of interest to us need to satisfy four further properties, as stated in
the following formal definition, where I(p) stands for the set {α ∈ Aτ | p

α
−→}

of initial actions of process p, to which we also refer as ready set.

Definition 1 (Logic LTS) An LTS 〈P,−→, T, F 〉 is a logic LTS if it satis-
fies the following conditions:

(1) T ∩ F = ∅
(2) T ⊆ {p | p 6−→}
(3) F ⊆ P such that p ∈ F if ∃α ∈ I(p) ∀p′ ∈ P. p

α
−→ p′ =⇒ p′ ∈ F

(4) p cannot stabilise (see below) =⇒ p ∈ F

Naturally, we require that a process cannot be tagged true and false at the
same time. As a true-process specifies arbitrary, full behaviour, any behaviour
made explicit by outgoing transitions is already included implicitly; hence,
any outgoing transitions may simply be cut off. The third condition formalises
the backwards propagation of inconsistencies as discussed in the motivation
section above.

The fourth condition relates to divergence, i.e., infinite sequences of τ -trans-
itions. In many semantic frameworks, e.g. [10], divergence is considered catas-
trophic, while in our setting catastrophic behaviour is inconsistent behaviour.
We view divergence only as catastrophic if a process cannot stabilise, i.e., if
it cannot get out of an infinite, internal computation. While this is intuitive,
there is also a technical reason to which we will come back shortly.

To formalise our notion of stabilisation, we first introduce a weak transition
relation =⇒F ⊆ P × (Aτ ∪ {ε}) × P (ε denoting the empty sequence), which
is defined by:

(1) p
ε

=⇒F p
′ if p ≡ p′ /∈ F , where ≡ denotes syntactic equality;

(2) p
ε

=⇒F p
′ if p /∈ F and p

τ
−→ p′′

ε
=⇒F p

′ for some p′′;
(3) p

a
=⇒F p

′ if p /∈ F and p
a

−→ p′′
ε

=⇒F p
′ for some p′′.

Our definition of a weak transition is slightly unusual: a weak transition cannot
pass through false-states since these cannot occur in computations, and it
does not abstract from τ -transitions preceding a visible transition. However,
we only will use weak visible transitions from stable states, i.e., states with no
outgoing τ -transition. Finally, we can now formalise stabilisation: a process p
can stabilise if p

ε
=⇒F p

′ for some stable p′.

Note that both Conds. (3) and (4) are inductively defined conditions. We refer
to them as fixed point conditions of F for LTS . For convenience, we will often

6

write LTS instead of Logic LTS in the sequel. Moreover, whenever we mention
a process p without stating a respective LTS explicitly, we assume implicitly
that such an LTS 〈P,−→, T, F 〉 is given. We let tt (ff) stand for the true (false)
process, which is the only process of an LTS with tt ∈ T (ff ∈ F).

2.3 Operators

Our conjunction operator is essentially a synchronous composition for visible
transitions and an asynchronous composition for τ -transitions. However, we
need to take care of the T - and F -predicates.

Definition 2 (Conjunction Operator) The conjunction of two Logic LTSs
〈P,−→P , TP , FP 〉, 〈Q,−→Q, TQ, FQ〉 is the LTS 〈P ∧Q,−→P∧Q, TP∧Q, FP∧Q〉
defined by:

• P ∧Q =df {p ∧ q | p ∈ P, q ∈ Q}
• −→P∧Q is determined by the following operational rules:

p
τ

−→P p′ =⇒ p ∧ q
τ

−→P∧Q p′ ∧ q

q
τ

−→Q q′ =⇒ p ∧ q
τ

−→P∧Q p ∧ q′

p
a

−→P p′, q
a

−→Q q′ =⇒ p ∧ q
a

−→P∧Q p′ ∧ q′

q ∈ TQ, p
α

−→P p′ =⇒ p ∧ q
α

−→P∧Q p′ ∧ q

p ∈ TP , q
α

−→Q q′ =⇒ p ∧ q
α

−→P∧Q p ∧ q′

• p ∧ q ∈ TP∧Q if and only if p ∈ TP and q ∈ TQ

• FP∧Q is the least subset of P ∧Q such that p ∧ q ∈ FP∧Q if at least one of
the following conditions holds:

(1) p ∈ FP or q ∈ FQ

(2) p /∈ TP and q /∈ TQ and p ∧ q 6
τ

−→P∧Q and I(p) 6= I(q)
(3) ∃α ∈ I(p ∧ q) ∀p′ ∧ q′. p ∧ q

α
−→P∧Q p′ ∧ q′ =⇒ p′ ∧ q′ ∈ FP∧Q

(4) p ∧ q cannot stabilise

Note that the treatment of true-processes when defining −→P∧Q and TP∧Q

reflects our intuition that these processes allow arbitrary behaviour. We are
left with explaining Conds. (1)-(4). Firstly, a conjunction is inconsistent if
any conjunct is. Conds. (2) and (3) reflect our intuition of inconsistency and,
respectively, backward propagation stated in the motivation section above.
Cond. (4) is added to enforce Def. 1(4). We refer to Conds. (3) and (4) as fixed
point conditions of F for ∧.

It is easy to check that conjunction is well-defined, i.e., that the conjunctive
composition of two Logic LTSs satisfies the four conditions of Def. 1. For
Def. 1(1) in particular, note that p∧ q ∈ TP∧Q does not satisfy any of the four

7

conditions for FP∧Q.

c
∧

a

b

∧
aa

τ

Fig. 3. Counter-example demonstrating non-associativity.

We may now demonstrate why we have treated non-escapable divergence as
catastrophic in our setting. This is because, otherwise, our conjunction op-
erator would not be associative as demonstrated by the example depicted in
Fig. 3. If the conjunction is computed from the left, the result is the first con-
junct. Computed from the right, the result is the same but with both processes
being in F . Hence, in the first case, the divergence hides the inconsistency.
Since this is not really plausible and associativity of conjunction is clearly
desirable, we need some restriction for divergence; it turns out that restricting
divergence to escapable divergence, i.e., potential stabilisation, is sufficient for
our purposes.

Definition 3 (Disjunction Operator) The disjunction of Logic LTSs
〈P,−→P , TP , FP 〉 and 〈Q,−→Q, TQ, FQ〉 satisfying (w.l.o.g.) P ∩Q = ∅, is the
Logic LTS 〈P ∨Q,−→P∨Q, TP∨Q, FP∨Q〉 defined by:

• P ∨Q =df {p ∨ q | p ∈ P, q ∈ Q} ∪ P ∪Q
• −→P∨Q is determined by the following operational rules:

always =⇒ p ∨ q
τ

−→P∨Q p

always =⇒ p ∨ q
τ

−→P∨Q q

p
α

−→P p′ =⇒ p
α

−→P∨Q p′

q
α

−→Q q′ =⇒ q
α

−→P∨Q q′

• TP∨Q = TP ∪ TQ; in particular, p ∨ q /∈ TP∨Q always
• FP∨Q = FP ∪ FQ ∪ {p ∨ q | p ∈ FP , q ∈ FQ}

The definition of disjunction, which reflects internal choice, is quite straight-
forward and well-defined. Only the definition of TP∨Q for p ∨ q is unusual, as
one would expect to simply have p ∨ q ∈ T whenever p or q is in T . However,
then Cond. (2) of Def. 1 would be violated. Our alternative definition respects
this condition and is semantically equivalent. In the sequel we leave out indices
of relations and predicates whenever the context is clear.

8

2.4 Refinement Preorder

As the basis for our semantical considerations we now define a naive refinement
preorder stating that an inconsistent specification cannot be implemented ex-
cept by an inconsistent implementation.

Definition 4 (Naive Consistency Preorder) The naive consistency pre-
order ⊑F on processes is defined by p ⊑F q if p ∈ F =⇒ q ∈ F .

One of the main objectives of this article is to identify the corresponding
fully-abstract preorder with respect to conjunction and disjunction, which is
contained in ⊑F . Our approach follows the testing idea of De Nicola and
Hennessy [5], for which we define a testing relation ⊑ as usual. Note that
a process and an observer need to be composed not simply synchronously
but conjunctively. This is because we want the observer to be sensitive to
inconsistencies, so that p ⊑ q if each “conjunctive observer” that sees an
inconsistency in p also sees one in q.

Definition 5 (Consistency Testing Preorder) The consistency testing
preorder ⊑ on processes is defined as the conjunctive closure of the naive
consistency preorder under all processes (observers), i.e., p ⊑ q if ∀o. p∧o ⊑F

q ∧ o.

To characterise the fully-abstract precongruence contained in ⊑F we will in-
troduce ready-tree semantics which is a variant of van Glabbeek’s path-based
possible-worlds semantics [6], and an associated preorder, the ready-tree pre-
order. This preorder is compositional for conjunction and disjunction and char-
acterises ⊑.

2.5 Example

As an illustration for our approach, consider process spec in Fig. 4. For A =
{a, b, c}, spec specifies that action c can only occur after action a. In the light of
the above discussions, an implementation of this intuition should offer initially
either just a, or a and b, or just b, so that spec is an internal choice between
three states. Moreover, after an action a, nothing more is specified; after an
action b, the same is required as initially.

While our specification of this simple behaviour may look quite complex, we
may imagine that process spec is generated automatically from a temporal-
logic formula. Fig. 4 also shows process impl which repeats sequence abc, and
spec ∧ impl. It will turn out that spec ⊑ impl, as we will show in Section 4.

9

τ

b τ

Ta c

a

bspec
τ

impl

a

b c
b

a
τ

τ

τ
F

F a

Fig. 4. Example processes.

3 Ready-Tree Semantics

A first guess for achieving a compositional semantics reflecting consistency
testing is to use a kind of ready-trace semantics [8]. Such a semantics would
refine trace semantics by checking the initial action set of every stable state
along each trace. However, this is not sufficient when dealing with inconsis-
tencies, since inconsistencies propagate backwards along traces as explained
in Section 2. It turns out that a set of tree-like observations is needed, which
leads to a denotational-style semantics which we call ready-tree semantics.

3.1 Observation Trees & Ready Trees

A tree-like observation can itself be seen as a deterministic LTS with empty
F -predicate, reflecting that observers are internally consistent.

Definition 6 (Observation Tree) An observation tree is a LTS 〈V,→, T, ∅〉
satisfying the following properties:

(1) 〈V,−→〉 is a non-empty tree whose root is referred to as v0

(2) ∀v ∈ V. v stable
(3) ∀v ∈ V, a ∈ I(v) ∃1v

′ ∈ V. v
a

−→ v′

We often denote such an observation tree by its root v0.

Next we define the observations of a process p, called ready trees. Note that
p can only be observed at its stable states.

Definition 7 (Ready Tree) An observation tree v0 is a ready tree of p if
there is a labelling h : V −→ P satisfying the following conditions:

(1) ∀v ∈ V. h(v) stable and h(v) /∈ F
(2) p

ε
=⇒F h(v0)

(3) ∀v ∈ V, a ∈ A. v
a

−→ v′ implies (a) h(v′) = h(v) ∈ T or
(b) h(v)

a
=⇒F h(v

′)
(4) ∀v ∈ V. (v /∈ T and h(v) /∈ T) implies I(v) = I(h(v))

10

Intuitively, nodes v in a ready tree represent stable states h(v) of p (cf.
Cond. (1), first part) and transitions represent computations containing ex-
actly one observable action (cf. Cond. (3)(b)). Since computations do not
contain false-states, no represented state is in F (cf. Cond. (1), second part).
Since p might not be stable, the root v0 of a ready tree represents a stable
state reachable from p by some internal computation (cf. Cond. (2)). If the
state h(v) represented by node v is in T , the subtree of v is arbitrary since h(v)
is considered to be completely underspecified (cf. Conds. (3)(a) and (4)). In
case h(v) /∈ T , one distinguishes two cases: (i) if v /∈ T , then v and h(v)
must have the same initial actions, i.e., the same ready set ; (ii) if v ∈ T , the
observation stops at this node and nothing is required in Conds. (3) and (4).

In the following, we write RT(p) for the set of all ready trees of p, fRT(p) for
the set of all ready trees of p that have finite depth (finite-depth ready trees),
and cRT(p) for the set of ready trees 〈V,−→, T, ∅〉 where T = ∅ (complete
ready trees). Note that a complete ready tree is called complete as it never
stops its task of observing; hence, complete ready trees are often infinite in
practise. Moreover, false-states may be characterised as follows:

Lemma 8 RT(p) = ∅ if and only if p ∈ F .

PROOF. Direction “⇐=” follows immediately from Def. 7(2) and the def-
inition of

ε
=⇒F . For Direction “ =⇒ ” we know by p /∈ F and Def. 1(4)

of the existence of some p′ such that p
ε

=⇒F p′ 6
τ

−→. Hence, tt ∈ RT(p) by
h(tt) =df p

′. 2

c

a
a

b
bb

a
T

a
b

T

T

a
c

b
a

b
T

a

Fig. 5. Some ready trees of spec.

We illustrate our concept of ready trees by returning to our example of Fig. 4.
Some of the ready trees of process spec are shown in Fig. 5. In the first ready
tree, the observation stops after the third b. In the second tree, we see that we
can observe an arbitrary tree after a, since the respective state of spec is in T .
An arbitrary tree can also consist of just the root, as shown for the right-most
a in the third tree; this tree is also complete. Process impl in Fig. 4 has only
one complete ready tree which is an infinite path repeating sequence abc; this
is also a ready tree of spec.

11

3.2 Ready-Tree Preorder & Expressiveness

Our ready-tree semantics suggests the following refinement preorder:

Definition 9 (Ready-Tree Preorder) The ready-tree preorder ⊏
∼ on pro-

cesses is defined as reverse ready-tree inclusion, i.e., p ⊏
∼ q if RT(q) ⊆ RT(p).

This preorder will turn out to be the desired fully-abstract preorder contained
in the naive consistency preorder.

We first show that ⊏
∼ could just as well be formulated on the basis of complete

ready trees and, for finitely branching LTS, of finite-depth ready trees. A
crucial notion for our results is the following:

Definition 10 (Ready-Tree Prefix) Ready tree v0 is a prefix of ready tree
w0, written v0 ≤ w0, if there exists an injective mapping ρ : V →֒ W such
that:

(1) ρ(v0) = w0

(2) v
a

−→ v′ =⇒ ρ(v)
a

−→ ρ(v′)
(3) ρ(v)

a
−→ w′ =⇒ v ∈ T or (∃v′. v

a
−→ v′ and ρ(v′) = w′)

(4) ρ(v) ∈ T =⇒ v ∈ T

Intuitively, one observation is a prefix of another if it stops observing earlier.
Recall that a true-node indicates that observation stops (cf. Cond. (3)). In-
tuitively, we obtain a prefix of w0 by cutting all transitions from some nodes
(and adding the latter to T), while cutting just some transitions of a node
is not allowed. It is easy to see that our definition of RT(p) is closed under
prefix:

Lemma 11 (v0 ≤ w0 and w0 ∈ RT(p)) implies v0 ∈ RT(p).

PROOF. Let w0 ∈ RT(p) due to h and v0 ≤ w0 with injection ρ. We define
h′ : V −→ P such that v 7−→ h(ρ(v)) and check that v0 is a ready tree of p:

(1) h′(v) = h(ρ(v)) is stable and not in F by Def. 7(1) for w0.
(2) p

ε
=⇒F h(w0) = h(ρ(v0) = h′(v0) by Def. 7(2) for w0.

(3) v
a

−→ v′ =⇒ ρ(v)
a

−→ ρ(v′) =⇒ h(ρ(v′)) = h(ρ(v)) ∈ T or
h(ρ(v))

a
=⇒F h(ρ(v

′)) =⇒ h′(v′) = h′(v) ∈ T or h′(v)
a

=⇒F h
′(v′).

(4) Assume v /∈ T and h′(v) /∈ T . Then, ρ(v) /∈ T by Def. 10(4) as well as
h(ρ(v)) /∈ T by the definition of h′. This implies I(ρ(v)) = I(h(ρ(v))) =
I(h′(v)). Furthermore, I(v) = I(ρ(v)) by Defs. 10(2) and (3) and since
v /∈ T . Hence, I(v) = I(h′(v)). 2

12

Note that, since we do not want to distinguish isomorphic observation trees,
we may always assume, without loss of generality, that the embedding ρ in
Def. 10 is the identity, i.e., that the node set V of the prefix is a subset of W .

Lemma 12 {v0 | ∃w0 ∈ cRT(p). v0 ≤ w0 } = RT(p).

PROOF. Inclusion “⊆” is an application of Lemma 11; note that cRT(p) ⊆
RT(p) by definition.

For proving the reverse inclusion “⊇”, let v0 ∈ RT(p) due to h. We construct
a suitable w0 such that the respective injection is the identity, by successively
extending the T -nodes of v0. Let v0 be the 0-extension of v0. Given the k-
extension of v0 we construct the (k+1)-extension as follows:

For each v ∈ T with h(v) ∈ T , remove v from T . For each v ∈ T with
h(v) /∈ T , and every a ∈ I(h(v)), choose some p′ with h(v)

a
=⇒F p′ /∈ F and

p′ stable. Such a p′ exists since h(v) /∈ F (due to Def. 7(1)) implies, by the
first fixed point condition of F for LTS (Def. 1(3)), the existence of a p′′ /∈ F
with h(v)

a
−→ p′′. Moreover, by the second fixed point condition of F for LTS

(Def. 1(4)), p′′ can stabilise, i.e., there is a stable p′ /∈ F such that p′′
ε

=⇒F p
′.

Now, choose a fresh node va and add v
a

−→ va into the tree, with h(va) = p′

and va ∈ T . Remove v from T .

Note that the (k+1)-extension is indeed a ready tree for p by construction.
Finally, let w0 be the component-wise union of all k-extensions with T set
to the empty set. This yields a complete ready tree, i.e., w0 ∈ cRT(p); note
in particular that our construction ensures that h(v) /∈ T =⇒ I(v) =
I(h(v)). 2

As a consequence of Lemma 12 we obtain the following corollary:

Corollary 13

(1) RT(p) is uniquely determined by cRT(p), and vice versa.
(2) RT(p) ⊆ RT(q) ⇐⇒ cRT(p) ⊆ cRT(q)
(3) fRT(p) = {v0 of finite depth | ∃w0 ∈ cRT(p). v0 ≤ w0}

Before stating the next lemma we introduce the following definitions that allow
us to approximate ready trees:

Definition 14 (k-Ready Tree) A k-tree 〈V,−→, T, ∅〉, where k ∈ N0, is an
observation tree where all nodes have depth at most k, and T is the set of all
nodes of depth k. A k-ready tree of p is a ready tree of p that is also a k-tree.
Moreover, k–RT(p) =df {v0 ∈ RT(p) | v0 is a k-tree }.

13

Intuitively, k-trees represent observations of k steps.

Definition 15 (Limit) Let ~v be an infinite sequence (vk)k∈N where vk ∈
k–RT(p) and vk ≤ vk+1, with the identity as injection, for all k ∈ N. Then,
lim~v is the component-wise union of all vk with T set to empty; lim~v is called
a limit of p.

Observe that a node of some vk in such a sequence is not in the true-predicate
of vk+1, whence nodes in T are successively pushed out. In the limit, we may
thus set T to empty. Moreover, if vk = vk+1 = vk+2 = . . . for some k, then the
limit is vk; this happens exactly when vk is complete. We base the notion of
finite branching on the weak transition relation

α
=⇒F .

Definition 16 (Finite Branching) Process p is finite branching if, for all p′

reachable from p, there are only finitely many 〈α, p′′〉 with p′
ε

=⇒F

α
=⇒F p

′′.

For finite-branching processes p, cRT(p) is characterised by the limits of p.

Lemma 17 If p is finite branching, cRT(p) equals the set of all limits of p.

PROOF. For proving inclusion “⊆”, let w0 ∈ cRT(p); again we refer to the
tree’s root as w0, too, and denote the tree’s node set by W . We define a
sequence ~v = (vk)k∈N as follows: vk consists of all nodes of w0 of depth at
most k, and the arcs between them. Moreover, T is the set of all nodes at
depth k. Hence, vk is a k-tree, and vk ≤ w0 with the identity as injection.
By Lemma 11, each vk is in RT(p). Obviously, vk ≤ vk+1 for all k ∈ N and
w0 = lim(~v).

For proving inclusion “⊇”, let ~v = (vk)k∈N with w0 ∈ lim(~v). Hence, for each vk

we have at least one hk such that vk ∈ RT(p) due to hk. To show w0 ∈ cRT(p)
we have to find a labelling g : W −→ P so that the definition of cRT is
satisfied. This h will be assembled from the hk’s by an application of König’s
Lemma.

We construct a graph with vertices 〈vk, h〉 such that vk ∈ k–RT(p) due to h.
Note again that there may be several such h. The edges of our graph are given
by 〈vk, h〉 −→ 〈vk+1, h

′〉 if h = h′|Vk
. Since p is finite branching we have only

finitely many 〈vk, h〉 for each k. Adding a root vertex r that is connected to
all 〈v0, h〉, we therefore obtain an infinite, finitely branching tree.

According to König’s Lemma, there exists an infinite path 〈v0, h0〉 → 〈v1, h1〉
→ · · · . We now set g =df

⋃
k∈N hk. That g satisfies the conditions of the

definition of cRT(p) is obvious for Conds. (1-3); for Cond. (4), observe that
each node w of w0 has some depth k, hence it is in vk+1 and not in Tk+1, and
we can use that vk+1 satisfies Cond. (4). 2

14

Note that the premise “p is finite branching” is only needed for direction “⊇” in
the above lemma. We may now obtain the following corollary of Cor. 13(3) and
of Lemma 17, which is the key to proving compositionality and full abstraction
of our ready-tree preorder in the next section.

Corollary 18

(1) cRT(p) ⊆ cRT(q) =⇒ fRT(p) ⊆ fRT(q), always.
(2) cRT(p) ⊆ cRT(q) ⇐= fRT(p) ⊆ fRT(q), if p is finite branching.

We conclude this section by pointing out that any process is ready-tree-
equivalent to a process that is either inconsistent itself, or does not have
any inconsistent state. If one normalises two processes by omitting inconsis-
tent states and then calculates their conjunction, one obtains an equivalent
process as first calculating the conjunction and subsequently normalising the
result. This gives us a first indication that the above definition of conjunction
is adequate.

4 Compositionality & Full Abstraction

This section presents our full-abstraction result of the ready-tree preorder ⊏
∼

with respect to the consistency testing preorder ⊑, and proves that ∧ and ∨
are indeed conjunction and, respectively, disjunction for ⊏

∼ . We first show
that ∧ and ∨ correspond to intersection and union on the semantic level,
respectively. While the correspondence for ∨ holds for ready trees in general,
the correspondence for ∧ only holds for complete ready trees.

Theorem 19 (Set-Theoretic Interpretation of ∧ and ∨)

(1) cRT(p ∧ q) = cRT(p) ∩ cRT(q)
(2) RT(p ∨ q) = RT(p) ∪ RT(q)

PROOF. We first establish statement (1) of Thm. 19. For proving direc-
tion “⊆”, take v0 ∈ cRT(p ∧ q) due to h. We define h′(v) =df p

′ if h(v) = p′∧q′

for some q′, for all v ∈ V , and check the conditions of the definition of cRT:

(1) Since p′ ∧ q′ is stable (not in F , resp.), also p′ is stable (not in F , resp.)
by our definition of ∧ (Def. (2)).

(2) p ∧ q
ε

=⇒F p
′ ∧ q′ implies p

ε
=⇒F p

′.
(3) Let v

a
−→ v′. If h(v′) = h(v) = p′ ∧ q′ ∈ T , then h′(v) = h′(v′) = p′ ∈ T ,

by Def. (2). If h(v) = p′∧ q′
a

=⇒F p
′′∧ q′′ = h(v′), then either h′(v) = p′ =

p′′ = h′(v′) ∈ T , or h′(v) = p′
a

=⇒F p′′ = h′(v′); note that we can avoid

15

F -processes along p′
a

=⇒F p
′′ since we can do so along p′ ∧ q′

a
=⇒F p

′′ ∧ q′′,
and that h′(v) = p′ is stable as noted in (1).

(4) Let h′(v) = p′ /∈ T and v /∈ T (which is in fact always the case in complete
ready trees). Then, h(v) = p′∧q′ /∈ T by Def. 2. Hence, I(v) = I(h(v)) =
I(p′∧ q′) by Def 7(4). Recalling that p′ and q′ are stable and that p′ /∈ T ,
the operational rules of Def. 2 show that
• either q′ ∈ T and I(p′ ∧ q′) = I(p′) = I(h′(v)),
• or q′ /∈ T and I(p′) = I(q′) by Def. 2(2). Observe p′ ∧ q′ /∈ F by

Def. 7(1). Thus, again, I(p′ ∧ q′) = I(p′) = I(h′(v)).
.

Note that this direction of the theorem is also valid for RT in place of cRT.

For proving direction “⊇”, take v0 ∈ cRT(p) ∩ cRT(q) due to h1 and h2,
respectively. Define h(v) =df h1(v) ∧ h2(v). We check the four conditions of
the definition of cRT, starting with Cond. (4):

Let v /∈ T and h(v) /∈ T . Without loss of generality, h1(v) /∈ T according to our
definition of ∧ (Def. (2)). If h2(v) ∈ T , we have I(h(v)) = I(h1(v)) = I(v) by
Cond. (4) for h1. If h2(v) /∈ T , then I(v) = I(h1(v)) = I(h2(v)) by Cond. (4)
for h1 and h2; hence, I(v) = I(h(v)) according to the definition of p ∧ q.

Conds. (1)-(3), are proved together. Note that, since h1(v) and h2(v) are stable,
we have that h(v) is stable, too. We will prove simultaneously that a number
of processes are not in F . To do so, we will collect a number of processes in
a list F and argue that the complement F meets the conditions for F in ∧
(Def. 2). Then we know that the least set Fp∧q satisfying these conditions is
contained in F , whence no process on our list is in F .

We now simply show that the processes on the list do not satisfy any of the
four conditions, using for the fixed point conditions (Defs. 2(3) and (4)) that
no process in F is in F .

Our list F firstly contains all processes p′ ∧ q′, so that p′ (q′) is a process
along the derivation p

ε
=⇒F h1(v0) (q

ε
=⇒F h2(v0)) according to Def. 7(2).

Analogously, we treat p′ on the subderivation p′′
ε

=⇒F h1(v
′) contained in

h1(v)
a

=⇒F h1(v
′) and q′ on the subderivation q′′

ε
=⇒F h2(v

′) contained in
h2(v)

a
=⇒F h2(v

′) according to Def. 7(3), if both derivations exist. Finally, if
h1(v)

a
=⇒F h1(v

′) (h2(v)
a

=⇒F h2(v
′)) exists and h2(v

′) = h2(v) ∈ T (h1(v
′) =

h1(v) ∈ T), we combine each such p′ (q′) with h2(v) (h1(v)).

We next show that F is consistent with our constraints on F (Defs. 2(1)-(4)):

(1) If p′ ∈ F or q′ ∈ F , then p′ ∧ q′ is not on the list, i.e., p′ ∧ q′ is in F . In
other words, if p′ ∧ q′ is on the list, then p′ /∈ F and q′ /∈ F such that the
first constraint on F is satisfied.

16

(2) Assume p′∧ q′ is on the list, and p′ /∈ T and q′ /∈ T and p′∧ q′ stable. The
last condition implies p′ ≡ h1(v) and q′ ≡ h2(v) for some v. Since v /∈ T
by completeness of v0, we get I(h1(v)) = I(v) = I(h2(v)) by Def. 7(4).

(3) Assume p′ ∧ q′ is on the list F . If p′ ∧ q′
τ

−→, then (without loss of
generality) p′

τ
−→ p′′ for some p′′ on the same derivation as p′. Hence,

p′ ∧ q′
τ

−→ p′′ ∧ q′ which is also on our list F .
If p′ ∧ q′ 6

τ
−→, then p′ ≡ h1(v) and q′ ≡ h2(v) for some v. Let a ∈

I(h1(v) ∧ h2(v)) and distinguish the following cases:
• h1(v) ∈ T , i.e., h1(v) ≡ tt : By Lemma 23, h1(v) ∧ h2(v) ∼= h2(v). We

must have a ∈ I(h2(v)), whence h2(v) /∈ T . Since v /∈ T by com-
pleteness of v0, we have I(v) = I(h2(v)) by Def. 7(4). Thus, v

a
−→ v′

for some v′, and h2(v)
a

−→ q′′
ε

=⇒F h2(v
′) by Def. 7(3). This implies

h1(v) ∧ h2(v)
a

−→ h1(v) ∧ q
′′ which is on our list F .

• h2(v) ∈ T , i.e., h2(v) ≡ tt : This case is analogous to the first one.
• h1(v) /∈ T and h2 /∈ T : We must have a ∈ I(h1(v)) and a ∈ I(h2(v)).

As above, v
a

−→ v′ for some v′; we conclude h1(v) ∧ h2(v)
a

−→ p′′ ∧ q′′

which is on our list F .
(4) Suppose p′ ∧ q′ is on our list F . Then, either p′ ∧ q′ 6

τ
−→, or p′ ∧ q′ lies

along the way to h1(v
′) ∧ h2(v

′) 6
τ

−→, using only processes on list F .

This concludes the proof of Cond. (1). The validity of Cond. (2) is now im-
mediate: by the above, p ∧ q

ε
=⇒F h1(v0) ∧ h2(v0) since p

ε
=⇒F h1(v0) and

q
ε

=⇒F h2(v0). To show the validity of Cond. (3), we consider v
a

−→ v′

and distinguish four cases, as suggested by Def. 7(3). We only show one
case here as the others are equally easy: if h1(v)

a
−→ p′

ε
=⇒F h1(v

′) and
h2(v)

a
−→ q′

ε
=⇒F h2(v

′), then h1(v) ∧ h2(v)
a

−→ p′ ∧ q′
ε

=⇒F h1(v
′) ∧ h2(v

′)
using only processes not in F . This finishes the proof of statement (1) of
Thm. 19.

The proof of statement (2) of Thm. 19 is much easier. For inclusion “⊇”,
let v0 ∈ RT(p) ∪ RT(q), whence (without loss of generality) v0 ∈ RT(p) due
to h. Now, it is straightforward to check that v0 ∈ RT(p ∨ q) due to h. We
only note that Cond (2) of Def. 7 follows from p ∨ q

τ
−→ p

ε
=⇒F h(v0), due

to p /∈ F by Lemma 8. For the reverse inclusion “⊆”, let v0 ∈ RT(p ∨ q)
due to h. By Def. 7(2), p ∨ q

ε
=⇒F h(v0) and (without loss of generality)

p ∨ q
τ

−→ p
ε

=⇒F h(v0). Obviously, v0 ∈ RT(p) by h. Note that, by Def. 7(2),
all h(v) are reachable from h(v0), whence h maps into P . 2

ba ca a
T

Fig. 6. Necessity of considering complete ready trees for conjunction.

Fig. 6 illustrates that Thm. 19(1) is invalid when considering all ready trees
instead of complete read trees. The two processes displayed on the left and in
the middle have the ready tree displayed on the right in common. However,

17

the conjunction of the two processes is false and has no ready trees. Intuitively,
the shown common ready tree formalises an observation that finished too early
to encounter the inconsistency.

Given Thm. 19, compositionality of our conjunction and disjunction operators
for ⊏

∼ is now an immediate consequence.

Theorem 20 (Compositionality)

(1) p ⊏
∼ q =⇒ p ∧ r ⊏

∼ q ∧ r
(2) p ⊏

∼ q =⇒ p ∨ r ⊏
∼ q ∨ r

PROOF. The compositionality of ∧ follows from the following implication
chain: RT(p) ⊆ RT(q) =⇒ (by Cor. 13(2)) cRT(p) ⊆ cRT(q) =⇒ cRT(p) ∩
cRT(r) ⊆ cRT(q) ∩ cRT(r) =⇒ (by Thm. 19(1)) cRT(p ∧ r) ⊆ cRT(q ∧ r)
=⇒ (by Cor. 13(2)) RT(p ∧ r) ⊆ RT(q ∧ r). The compositionality of ∨ can
be proved analogously by referring to Thm. 19(2) instead of Thm. 19(1). 2

Thm. 19 also allows us to prove that ∧ and ∨ really behave as conjunction
and disjunction with respect to our refinement relation.

Theorem 21 (∧ is And & ∨ is Or)

(1) p ∧ q ⊏
∼ r ⇐⇒ p ⊏

∼ r and q ⊏
∼ r

(2) r ⊏
∼ p ∨ q ⇐⇒ r ⊏

∼ p and r ⊏
∼ q

PROOF. Part (1) follows from the following equivalences: RT(p ∧ q) ⊆ RT(r)
⇐⇒ (by Cor. 13(2)) cRT(p ∧ q) ⊆ cRT(r) ⇐⇒ (by Thm. 19(1)) cRT(p) ∩
cRT(q) ⊆ cRT(r) ⇐⇒ cRT(p) ⊆ cRT(r) and cRT(q) ⊆ cRT(r) ⇐⇒
(by Cor. 13(2)) RT(p) ⊆ RT(r) and RT(q) ⊆ RT(r). Again, for Part (2)
we get a similar but simpler proof by referring to Thm. 19(2) instead of
Thm. 19(1). 2

Part (2) of the above theorem also implies a property demanded by system
designers [11]: if q1 is an implementation of p1 and q2 is an implementation
of p2, then the specification p1 ∨ p2 can be implemented by either q1 or q2. To
justify this within our framework, we first formalise the premise as p1

⊏
∼ q1 and

p2
⊏
∼ q2. By compositionality, Thm. 20(2), we obtain p1∨p2

⊏
∼ q1∨q2. But this

implies the desired statement p1 ∨ p2
⊏
∼ q1 and p1 ∨ p2

⊏
∼ q2, by Thm. 21(2).

In order to see that ready trees are indeed fully-abstract with respect to our
naive consistency preorder, it now suffices to prove that ⊏

∼ coincides with our

18

consistency testing preorder. This means that ⊏
∼ is the adequate preorder in

our setting of Logic LTSs with conjunction and disjunction.

Theorem 22 (Full Abstraction) ⊑ = ⊏
∼

For the proof of this theorem, the following technical lemma will be convenient.

Lemma 23 The LTSs of tt ∧ p and p are isomorphic, written tt ∧ p ∼= p.

PROOF. It is easy to check that tt ∧ p′ 7−→ p′ is an isomorphism. Note that
with tt ∧ p′ ∈ F iff p′ ∈ F , the fixed point conditions of F are satisfied. 2

We may now prove Thm. 22.

PROOF. We first prove the easier direction “⊇”. If p ⊏
∼ q then, for all o, we

have p∧ o ⊏
∼ q ∧ o by Thm. 20. If p∧ o ∈ F , then RT(p ∧ o) = ∅ by Lemma 8.

Hence, RT(q ∧ o) = ∅, i.e., q ∧ o ∈ F by Lemma 8 again. Thus, p ⊑ q.

For proving the reverse inclusion, let p ⊑ q and v0 ∈ RT(q) due to h. Note
that v0 is a process itself. We show that q ∧ v0 /∈ F . To do so, we use a fixed
point argument similar to the one in the proof of Thm. 19. Here, our list firstly
includes processes q′∧v0, with q′ on the derivation q

ε
=⇒F h(v0) (cf. Def. 7(3)),

as well as processes q′ ∧ v′, with q′ along the derivations q′′
ε

=⇒F h(v′) that
emerge due to h(v)

a
−→ q′′

ε
=⇒F h(v′) in Def. 7(3). Furthermore, we include

all processes h(v′) ∧ v′ on our list, whenever h(v′) = h(v) ∈ T in Def. 7(3).
Finally, we include all q′ ∧ v′ such that q′ /∈ F , v′ ∈ T and q′ is a process in
the same LTS as q.

We now check that the complement of this list is a fixed point, i.e., satisfies
Conds. (1)-(4) of Def. 2. Let q′ ∧ v′ be on our list:

(1) According to the definition of observation trees (Def. 6), v′ /∈ F . More-
over, q′ /∈ F by the definition of

ε
=⇒F , or q′ ∈ T or ‘immediate’, depending

on why q′ ∧ v′ has been included in the list.
(2) If q′ /∈ T and v′ /∈ T and q′ ∧ v′ 6

τ
−→, then q′ ≡ h(v′), as these are the

only stable processes on our list. Hence, we may apply Def. 7(4) for v′ to
obtain I(q′) = I(v′).

(3) Let α ∈ I(q′ ∧ v′). If α = τ , then q′
τ

−→ q′′ on the respective derivation
according to the definition of our list. Then, q′ ∧ v′

τ
−→ q′′ ∧ v′ which is

on our list as well. If α 6= τ , then q′ is stable, whence q′ ≡ h(v′) again or
v′ ∈ T . We proceed by a case distinction:

19

• q′ ∈ T : Hence, v′
α

−→ v′′ for some v′′ and v′ /∈ T . Since q′ 6
α

=⇒F , we are

in the case of Def. 7(3a), i.e., h(v′′) = h(v′) = q′. Moreover, q′ ∧ v′
α

−→
q′ ∧ v′′ which is on our list.

• v′ ∈ T : Hence, q′
α

−→ q′′ for some q′′ /∈ F . Then, q′ ∧ v′
α

−→ q′′ ∧ v′

which is on our list.
• q′ /∈ T and v′ /∈ T : Hence, v′

α
−→ v′′ for some v′′. Since h(v′) = q′ /∈ T

we know, by Def. 7(3), that q′
α

−→ q′′
ε

=⇒F h(v
′′). Thus, q′∧v′

α
−→ q′′∧v′′

which is on our list.
(4) If q′ ∧ v′ is on the list due to q′

ε
=⇒F h(v′), then q′ ∧ v′

ε
=⇒F h(v′) ∧ v′

along processes that are on our list, and h(v′) ∧ v′ is stable since h(v′) is
stable and v′ is trivially stable.

If q′∧v′ is on the list due to v′ ∈ T , then q′ can stabilise. Thus, q′∧v′ can
stabilise in an isomorphic way using only processes on the list.

Thus, we have established q ∧ v0 /∈ F . This implies by p ⊑ q that p ∧ v0 /∈ F .
To show v0 ∈ RT(p), we will construct a respective labelling g according
to depth. Since p ∧ v0 /∈ F , process p ∧ v0 can stabilise by Def. 1(4) with
p ∧ v0

ε
=⇒F p

′ ∧ v0 for some stable p′ with p
ε

=⇒F p
′. We define g(v0) =df p

′, so
that Cond. (2) of Def. 7 is satisfied, and Cond. (1) of Def. 7 holds for v0. Note
that g(v0) ∧ v0 ≡ p′ ∧ v0 /∈ F by the definition of

ε
=⇒F .

Assume that g is defined up to depth k such that Conds. (1), (3) and (4) of
Def. 7 hold for all v with depth less than k, and that Cond. (1) is satisfied
for depth k as well. Moreover, assume that g(v) ∧ v /∈ F whenever g(v) is
defined. These assumptions are our induction hypothesis, which we have just
checked for k = 0. For each v at depth k we proceed as follows. If v ∈ T , then
Conds. (3) and (4) are vacuously true; since v has no children at depth k+ 1,
we are done. Thus, let v /∈ T and distinguish the following cases:

• g(v) ∈ T : For all v′ with v
a

−→ v′, define g(v′) =df g(v). Thus, Conds. (3)
and (4) are satisfied for v, and g(v′) is stable and not in F . Since g(v) ∈ T
we have, by a consequence of Lemma 23, that g(v)∧v and v are isomorphic.
As v

a
−→ v′ /∈ F , this implies g(v′) ∧ v′ ≡ g(v) ∧ v′ /∈ F .

• g(v) /∈ T : We first show Cond. (4) whose premise is now true. As g(v)∧v /∈
F , the facts v /∈ T , g(v) /∈ T and g(v) ∧ v stable imply I(v) = I(g(v)).

Next, we show Cond. (3), i.e., how to extend g to all v′ with v
a

−→ v′

such that g(v)
a

=⇒F g(v′). Consider some v
a

−→ v′. Since I(v) = I(g(v))
we know a ∈ I(g(v) ∧ v) and, since g(v) ∧ v /∈ F , there is some p′ such
that g(v) ∧ v

a
−→ p′ ∧ v′ /∈ F . But p′ ∧ v′ /∈ F implies that p′ ∧ v′ can

stabilise according to Def. 1(4), with some derivation p′∧v′
ε

=⇒F p
′′∧v′ 6

τ
−→.

In particular, p′′ is stable and not in F . In addition, g(v)
a

−→ p′
ε

=⇒F p′′.
Note that all processes along the derivation p′

ε
=⇒F p′′ are not in F since,

otherwise, some process along p′∧ v′
ε

=⇒F p
′′∧ v′ would be in F . Finally, we

now define g(v′) =df p
′′.

When applying this construction to all v′ with v
a

−→ v′, Cond. (3) is

20

satisfied for v. Furthermore, Cond. (1) is satisfied for all v′, and g(v′)∧v′ /∈ F .

Treating all v at level k as above, we extend g to depth k + 1 such that the
induction hypothesis now also holds for k+1. With this induction, we can thus
define g for each v in the observation tree. Hence, v0 ∈ RT(p) due to g. 2

The following proposition states the validity of several boolean properties de-
sired of conjunction and disjunction operators. Here, = denotes the kernel of
our consistency testing preorder (ready-tree preorder).

Proposition 24 (Properties of ∧ and ∨)

Commutativity: p ∧ q = q ∧ p p ∨ q = q ∨ p

Associativity: (p ∧ q) ∧ r = p ∧ (q ∧ r) (p ∨ q) ∨ r = p ∨ (q ∨ r)

Idempotence: p ∧ p = p p ∨ p = p

False: p ∧ ff = ff p ∨ ff = p

True: p ∧ tt = p p ∨ tt = tt

Distributivity: p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

PROOF. All the above properties are straightforward since ∧ (∨) on pro-
cesses corresponds to ∩ (∪) on complete ready trees by Thm. 19, and since
complete ready trees and ready trees induce the same preorder by Cor. 13(2).
Moreover, cRT(ff) is the empty set of complete observation trees, while cRT(tt)
is the set of all complete observation trees. 2

We may also obtain the expected results for relating ∧ and ∨ to ⊑.

Proposition 25 (Relating ∧, ∨ to ⊑)

(1) p ∧ q = q ⇐⇒ p ⊑ q
(2) p ∨ q = p ⇐⇒ p ⊑ q

PROOF. Both of these statements follow from Thm. 19 and Cor. 13(2). 2

We conclude this section by briefly returning to the illustrative processes spec
and impl of Fig. 4. We have already remarked that the only complete ready
tree of the latter is also one of the former. Hence, by Thm. 22, impl is indeed
a refinement of spec according to our ready-tree preorder. Considering the
conjunction of these processes, also shown in Fig. 4, it might be easier to see
this using Prop. 25(1).

21

5 Comparing Ready-Tree Semantics to Other Semantics

In the following, we compare ready-tree semantics to four other semantics,
namely possible-worlds semantics, ready-trace semantics, failures semantics
and ready simulation [6,8]. Since our treatment of divergence is different from
the one of failures semantics, we restrict our discussion to τ -free processes in
Sections 5.2 and 5.3.

5.1 Possible-Worlds Semantics

Our ready-tree semantics is in essence the path-based possible-worlds semantics
of van Glabbeek [6]. This semantics is inspired by the possible-worlds seman-
tics that was introduced by Veglioni and De Nicola in [7]. Their idea was to
consider a specification that offers a choice between different behaviours as
“standing for a set of models, where each model represents one of the possi-
ble behaviours specified” [7]. However, their semantics had several technical
shortcomings which were pointed out and addressed by van Glabbeek in his
handbook article [6]. Van Glabbeek refers to Veglioni and De Nicola’s orig-
inal semantics as state-based possible-worlds semantics and has coined the
corrected version path-based possible-worlds semantics.

Despite the strong similarities, there are differences between van Glabbeek’s
path-based possible-worlds semantics and our ready-tree semantics. Firstly,
van Glabbeek’s framework does not consider τ -transitions and thus does not
address divergence. Secondly, our framework of Logic LTS does not only in-
clude τ -transitions but also a true- and a false-predicate. In ready trees, the
true-predicate has the effect of terminating observation; this concept does not
exist in possible-worlds semantics. Thirdly, van Glabbeek’s semantics uses de-
terministic cyclic labelled transition systems, in addition to what we call ready
trees. However, doing so has no effect on the semantics’ expressive power.

Note that within our setting of τ -pure LTSs, the theory of ready-tree semantics
is – when putting the issue of divergence aside – almost fully determined by
the sub-theory of τ -free LTSs. The reason can be expressed in process algebra
by saying that the kernel of ⊏

∼ , which we call ready-tree equivalence, satisfies
the law

a.
∑

i∈I

τ.bi.pi =
∑

i∈I

a.bi.pi

This law allows any τ -pure process to be rewritten as a ready-tree-equivalent
process that features no τ -moves at all, except for the case that the process al-
lows an initial τ -move. Even in that case one could get rid of τ -moves, albeit at
the price of having multiple initial states for modelling initial nondeterminism.

22

5.2 Ready-Trace Semantics

A ready trace [12] of a process is a sequence of actions that it can perform
and where, at the beginning of the trace, between any two actions and at the
end, the ready set of the process reached at the respective stage is inserted.
Such a ready trace can be understood as a particular type of ready tree that
consists only of a single path and includes additional transitions representing
the ready sets. These additional transitions ensure that each state on the path
has, for each action in its ready set, exactly one transition that either belongs
to the path or ends in a true-state.

a a

c b

d

cb

d

a a

c b

d

cb

d

a

b

d

c

Fig. 7. Ready-tree semantics is strictly finer than ready-trace semantics.

For example, the first ready tree in Fig. 5 in Section 3 represents the ready
trace {a, b}b{b}b{a, b}. Consequently, the ready traces of a process can be read
off from its ready trees, and ready-tree inclusion implies ready-trace inclusion.
The reverse implication does not hold as demonstrated by the two left-most
processes in Fig. 7. These possess the same ready traces; however, the obser-
vation tree on the right-hand side is a ready tree of the first, but not of the
second process.

5.3 Failures Semantics

The failures semantics of a process is the set of its refusal pairs. Such a pair
consists of a trace followed by a refusal set, i.e., a set of actions that the
process reached by the trace cannot perform. Such a refusal pair can be read
off from the respective ready trace by deleting all its ready sets and adding
a set of actions having an empty intersection with the last ready set on the
trace. Thus, ready-tree semantics is finer than failures semantics.

5.4 Ready Simulation

Intuitively, a process q ready-simulates some process p if there exists a simula-
tion relation from p to q such that related states have identical ready sets [9,13].

23

Definition 26 (Ready Simulation on Logic LTS)
Let 〈P,−→P , TP , FP 〉 and 〈Q,−→Q, TQ, FQ〉 be two Logic LTS. A relation R ⊆
P ×Q is a ready simulation relation, if the following conditions hold, for any
〈p, q〉 ∈ R and a ∈ A:

(1) q ∈ TQ implies p ∈ TP ;
(2) q

τ
−→ q′ and p /∈ T implies ∃p′. p

ε
=⇒F p

′ and 〈p′, q′〉 ∈ R;
(3) q

a
−→ q′ and p /∈ T implies ∃p′. p

a
=⇒F p

′ and 〈p′, q′〉 ∈ R;
(4) q stable and p /∈ T implies p stable and I(p) = I(q).

We say that p ready simulates q, in symbols p �r q, if there exists a ready
simulation relation R and some p′ with p

ε
=⇒F p

′ such that 〈p′, q〉 ∈ R.

Item (4) also ensures that p in Item (3) is stable, and that hence its weak
transition is of the special form we require in this paper. In the definition of
p �r q, p may perform a weak transition first; this allows an unstable p to
ready simulate a stable q, and it corresponds to the special root-condition in
Definition 7(2).

It turns out that ready simulation includes the ready-tree preorder. This is
a valuable result for applications of our refinement theory, as will become
evident in Section 6.2.

Theorem 27 �r ⊆ ⊏
∼ .

This result has been shown in [6] for τ -free labelled transition systems and
can be adapted to our framework of Logic LTS. The key observation is that,
when p �r q and tracing a ready tree of p, ready simulation translates this
ready tree to the same ready tree for q.

c

a

b

a

c

a

b

dd

bb

Fig. 8. The ready-tree preorder is strictly coarser than ready simulation.

Fig. 8 shows that the ready-tree preorder is indeed strictly coarser than ready
simulation. Both processes displayed have the same ready trees, all of which
are paths. However, the second process cannot even simulate the first one.

24

6 Specification, Design & Refinement – An Example

As explained earlier, our motivation for studying conjunction on processes is
to provide a basis for combining operational and logical styles of specification.
Moreover, any such heterogeneous specification language should be equipped
with a compositional refinement preorder that allows one to trade off opera-
tional contents for logical contents.

This section demonstrates that Logic LTS, together with the ready-tree pre-
order, provide the foundation for realising our vision. We first show how our
setting, which so far only incorporates logical operators, namely conjunction
and disjunction, may be augmented with a parallel composition operator. We
then apply this extended framework to a non-trivial example which is con-
cerned with the specification and design of a simple mode logic [14]. Mode
logics are key components of modern digital control systems, such as flight
guidance systems installed in aircraft. We detail how our heterogeneous spec-
ification can be refined step-by-step, first to an abstract design and then to a
detailed, fully operational design.

6.1 Parallel Composition

We start off by defining a simple parallel composition operator on Logic LTS,
namely the fully synchronous product ‖ . The only slight difficulty is in defining
the transitions of a process that is composed with a true-process, such as tt.

Intuitively, a true-process can autonomously decide which set of actions to
offer initially. Within a fully synchronous product with some process p, this
means that, e.g., p ‖ tt may behave according to any subset of initial actions
of p. In particular, tt is not a neutral element for parallel composition, as
is to be expected. In the following, it is convenient to write II(p) for the
set {a ∈ A | p

ε
=⇒F

a
−→}. Note that II(p) is finite if p is finite-branching. We

also assume that, without loss of generality, all LTSs except observation trees
contain tt as a process in their T -set. Finally, the process ttA, for A ⊆ A
with A 6= ∅, denotes a true-process that has autonomously chosen to offer the
actions in A next. Hence, it can engage in any a-transition with a ∈ A and
thereafter behave like tt again.

Definition 28 (Synchronous Parallel Composition) The synchronous
parallel composition of Logic LTSs 〈P,−→P , TP , FP 〉, 〈Q,−→Q, TQ, FQ〉 is the
LTS 〈P ‖Q,−→P ‖Q, TP ‖Q, FP ‖Q〉 defined by:

• P ‖Q =df {p ‖ q | p ∈ P, q ∈ Q} ∪ {tt ‖ q, ttA ‖ q | ∅ 6= A ⊆ II(q) , q ∈
Q} ∪ {p ‖ tt, p ‖ ttA | A ⊆ II(p) , p ∈ P}

25

• −→P ‖Q is determined by the following operational rules:

p
τ

−→P p′ =⇒ p ‖ q
τ

−→P ‖Q p′ ‖ q

q
τ

−→Q q′ =⇒ p ‖ q
τ

−→P ‖Q p ‖ q′

p
a

−→P p′, q
a

−→Q q′ =⇒ p ‖ q
a

−→P ‖Q p′ ‖ q′

p ∈ TP , ∅ 6= A ⊆ II(q) =⇒ p ‖ q
τ

−→P ‖Q ttA ‖ q (∗)

q ∈ TQ, ∅ 6= A ⊆ II(p) =⇒ p ‖ q
τ

−→P ‖Q p ‖ ttA (∗∗)

• p ‖ q ∈ TP ‖Q if and only if p ∈ TP and q ∈ TQ

• p ‖ q ∈ FP ‖Q if and only if p ∈ FP or q ∈ FQ

Note that the parallel composition of two Logic LTS is indeed a Logic LTS.
Indeed, our definition of parallel composition is almost identical to the one for
conjunction and differs only in two aspects.

Firstly, and most importantly, it differs in the treatment of inconsistencies
as inconsistent processes are only inherited from the argument LTS. In other
words, when composing LTSs in parallel no new inconsistencies arise, whereas
a conjunctive composition may add new inconsistencies. As a simple example,
let us re-consider the processes p and q of Fig. 1, which specify that exactly
action a and respectively action b is offered initially. Both p ‖ q and p∧ q have
no outgoing transitions. However, their conjunctive composition reveals an
inconsistency, i.e., p ∧ q ∈ F , while their parallel composition is consistent,
i.e., p ‖ q /∈ F .

Secondly, the treatment of true-processes in the definition of the transition
relation −→P ‖Q is special. This is because true-processes do not behave as
neutral elements with respect to parallel composition, as explained earlier.
For example, operational rule (∗∗) states that, when composing process p with
some q ∈ TQ, process q decides autonomously on the set of initial actions A
to be offered next. This explains the τ -transition of p ‖ q to p ‖ ttA. In the
next step, p ‖ ttA can only engage in an action in II(p) ∩ A. Note that it is
therefore sufficient to consider in our operational rule only those A that satisfy
∅ 6= A ⊆ II(p). Summarising the behaviour of a parallel composition of p with
some q ∈ TQ, process q nondeterministically chooses, for each execution step,
which transitions of p (if any) to cut off.

In order to convey the exact behaviour of parallel composition on the seman-
tic level of ready trees, we first define a notion of parallel composition on
observation trees.

Definition 29 Let 〈V1,−→1, T1, ∅〉 and 〈V2,−→2, T2, ∅〉 be observation trees
with roots v1

0 and v2
0, respectively. The parallel composition of these trees, writ-

ten v1
0
◦‖v2

0, is the observation tree 〈V,−→, T, ∅〉, where

26

• V =df {v1
◦‖v2 | v1 ∈ V1 , v2 ∈ V2}, restricted to vertices reachable from v1

0
◦‖v2

0;
• v1

◦‖v2

a
−→ v′1

◦‖v′2 if v1

a
−→1 v

′
1 and v2

a
−→ v′2;

• v1
◦‖v2 ∈ T if v1 ∈ T1 or v2 ∈ T2.

It is straightforward to check that the parallel composition of two observation
trees is indeed an observation tree. We lift the definition of ◦‖ elementwise
to sets T1, T2 of observation trees, i.e., T1

◦‖T2 =df {v
1
0
◦‖v2

0 | v
1
0 ∈ T1, v

2
0 ∈ T2}.

The following proposition relates parallel composition on LTSs to parallel
composition on ready trees.

Proposition 30 RT(p ‖ q) = RT(p)◦‖RT(q).

PROOF. We start off by proving direction “⊆”. Let v0 with h : V −→ P ‖Q
be a ready tree of p ‖ q. Moreover, let us initially assume that TP = TQ = ∅. We
construct two observation trees v1

0 and v2
0 with h1 : V1 −→ P and h2 : V2 −→

Q. The trees v1
0 and v2

0 contain V as well as all of v0’s edges and its T -set. In
addition, we set h1(v) =df p

′ and h2(v) =df q
′, whenever h(v) = p′ ‖ q′. Hence,

Conds. (1)-(3) of Def. 7 are satisfied. Furthermore, at this state, tree v0 is the
parallel composition of the two trees constructed so far.

We now turn to Cond. (4) of Def. 7 and take some v /∈ T such that h(v) /∈ T .
Let h(v) = p′ ‖ q′. Then, I(v) = I(p′) ∩ I(q′). For each a ∈ I(p′) \ I(v), we
add to the tree v1

0 a new vertex v′ and an edge v
a

−→ v′, and we put v′ into T1.
Further, we choose a stable p′′ with p′

a
=⇒F p′′ and set h1(v

′) =df p
′′. Note

that this addition of vertex and edge does not change the composition of the
two constructed trees since a /∈ I(q′) – even if one repeats our extension con-
struction for all new vertices in both trees. Moreover, the new vertex satisfies
Conds. (1), (3) and (4) of Def. 7.

We repeat this construction for each v and a, and analogously for the second
tree. Now all vertices in the constructed trees satisfy Cond. (4) of Def. 7. As
already observed above, the parallel composition of the two trees is indeed the
studied tree of p ‖ q.

If TP or TQ contain true-states, then one has to slightly change the construction
in the following way. Assume that transition v

a
−→ v′ is the first on some path

from v1
0 where the corresponding computation h(v)

a
=⇒F h(v

′) uses operational
rule (∗), and let this computation have the form h(v) = p′ ‖ q′

a
=⇒F p

′′ ‖ q′′
τ

−→
ttA ‖ q′′

ε
=⇒F ttA ‖ q′′′ = h(v′), for some p′′, q′′. We set h1(v

′) =df p
′′ ∈ TP

and also for the vertices v′′ of the branch of v′. Note that, in this branch,
Conds. (1), (3) and (4) of Def. 7 are satisfied without further additions. We
can make similar alterations if the operational rule (∗∗), or both operational
rules (∗) and (∗∗), have been used, and analogously for p ‖ q

ε
=⇒F h(v0).

27

For proving the reverse inclusion “⊇”, we take two ready trees v1
0 and v2

0 of p
and q with labellings h1 : V1 −→ P and h2 : V2 −→ Q, respectively. Identifying
the vertices with the action sequences that lead to them, we can consider v1

0
◦‖v2

0

as the intersection 〈V,−→, T, ∅〉 of these trees.

Let us initially assume that no processes in TP and TQ play a role for the
trees v1

0 and v2
0 , respectively. We define h(v) =df h1(v) ‖ h2(v) and check Def. 7.

Verifying Conds. (1)-(3) is easy. For Cond. (4), we take v /∈ T (and h(v) /∈ T
by assumption). The set I(v) is the intersection of I(v) = I(h1(v)) in v1

0 and
I(v) = I(h2(v)) in v2

0 , while I(h(v)) = I(h1(v)) ∩ I(h2(v)) by Def. 28.

Now, consider the case that v
a

−→ v′ in V , h1(v) /∈ TP and h1(v)
a

=⇒F h1(v
′) ∈

TP according to Cond. (3b) of Def. 7, while h2(v
′) /∈ TQ. Let A′ =df I(v′)

in v1
0 and A =df A

′ ∩ I(h2(v
′)). Then, h1(v) ‖ h2(v)

a
=⇒F h1(v

′) ‖ h2(v
′)

τ
−→

ttA ‖ h2(v
′) = h(v′). This satisfies Conds. (1) and (3) in Def. 7. For Cond. (4),

note that I(h(v′)) = A = A′ ∩ I(h2(v
′)), where I(v′) = A′ in v1

0 and I(v′) =
I(h2(v

′)) in v2
0 .

The case of v
a

−→ v′ in V with h1(v) = h1(v
′) ∈ TP is similar: h(v) =

ttA ‖ h2(v)
a

−→ tt ‖ q′
ε

=⇒F tt ‖ h2(v
′)

τ
−→ ttB ‖ h2(v

′) = h(v′) for suitable A, B
and q′. Analogously, we treat the case h2(v

′) ∈ TQ and the case h1(v
′) ∈ TP

and h2(v
′) ∈ TQ. 2

Prop. 30 is the key for proving that operator ‖ on LTS is compositional.

Theorem 31 (Compositionality) p ⊏
∼ q =⇒ p ‖ r ⊏

∼ q ‖ r, for any r.

PROOF. p ⊏
∼ q ⇐⇒ (by Def. 9) RT(q) ⊆ RT(p) ⇐⇒ (by the definition

of ◦‖ on ready tree sets) RT(q) ◦‖RT(r) ⊆ RT(p) ◦‖RT(r) ⇐⇒ (by Prop. 30)
RT(q ‖ r) ⊆ RT(p ‖ r) ⇐⇒ (by Def. 9) p ‖ r ⊏

∼ q ‖ r. 2

6.2 Specifying & Designing a Mode Logic

Our example concerns the design of mode logics which can, e.g., be found
in flight guidance systems. We assume a rather simple mode logic that only
controls the horizontal and vertical axes of a small aircraft.

The mode of each of the two axes can be either ON or OFF. If its status is ON, this
is signalled via event on1 and on2, respectively. Note that we will consistently
index states and events of the horizontal mode by 1 and of the vertical mode
by 2. Each mode i, for i ∈ {1, 2}, may toggle between states ONi and OFFi

upon the switch event swi.

28

1

FF

NF NN

FNτ

τ τ

τ

τ

τ

on , on1 2

on ,
on

1
2

on ,
on

1
2

sw

sw

sw

sw

sw

sw

sw

1

1

2

2

2

2

1

1sw

FF

NF NN

FN

on

on
on

on

on

on

2

2
2

1
1

1

τ
τ
τ

τ τ

τ

sw

sw

sw

sw
2

2

1

1

sw

sw2

2

sw
sw1

Fig. 9. Monolithic specification of the mode logic.

A typical, monolithic specification SPEC of our mode logic might look like the
one sketched in Fig. 9. Here the states of the horizontal and vertical mode are
abbreviated by two letters, where, e.g., FN encodes that the horizontal mode
is in state OFF and the vertical mode is in state ON. Moreover, the monolithic
specification has so many transitions that, in order to ensure readability, we
needed to draw its LTS in two diagrams that need to be superposed in the
obvious way. In each of the major four states FF, FN, NF and NN, at least one
of the two modes offers its switch event. This is each encoded by an internal
choice (disjunction) via three τ -transitions to an intermediate state where
either sw1, or sw2, or both are offered.

The specification SPEC of Fig. 9 is so difficult to read that no system designer
would take this as a starting point for design. Instead, designers know the
architecture of mode logics very well, which has not changed in decades; hence,
they naturally prefer to specify new mode logics in a component-based fashion.

τ

ON1

OFF1

sw sw1 1

sw

sw2

2

on2on2

on , on , sw1 2 2

OFF

ττ

sw , on2 2

on , on , sw on , on , sw1 1 2 22

2

2

1

1ON

A

τ

A’

A’’sw

sw
1

1

2sw , on

ττ
τ

Fig. 10. Abstract design (left), constraint (middle) and concrete design (right).

Accordingly, a designer starts off by developing an abstract design of each
mode in isolation. A possible design SPEC

a
1 of the horizontal mode is depicted

on the left in Fig. 10. In each principal state, OFF1 and ON1, the mode can
internally decide either to offer event sw1 (via the τ -transitions pointing right),
or not to offer this event (via the τ -transitions pointing left). The rationale is
that, under certain conditions which we will discuss later, a mode should not
allow certain switch events. The abstract design SPEC

a
2 of the vertical mode is

analogous to the horizontal mode, but with indices 1 and 2 interchanged.

29

One may now consider the synchronous parallel composition SPEC
a
1 ‖ SPEC

a
2

as the mode logic’s abstract design. However, this structured design is not a
refinement of the monolithic specification SPEC: SPEC ⊏

∼ SPEC
a
1 ‖ SPEC

a
2 does not

hold since SPEC
a
1 ‖ SPEC

a
2 can deadlock whereas SPEC cannot. This is because

both SPEC
a
1 and SPEC

a
2 can autonomously decide to move away from their

initial OFF states via their left τ -transitions, thereby reaching a composed
state with no outgoing transition. In order to fix this problem, the designer
decides not to modify the abstract design of either SPECa

1 or SPECa
2, but simply

to conjunctively add a declarative constraint Cdead.

Further thought reveals that what is demanded is actually not deadlock free-
dom but something stronger, namely that at least one of the events sw1 and sw2

must be enabled at any state of the abstract design. This constraint is ex-
pressed via the LTS Cdead which is sketched in the middle of Fig. 10. This LTS
has a τ -branch for each A ⊆ {on1, on2, sw1, sw2} such that sw1 ∈ A or sw2 ∈ A.
Each τ -branch returns to its initial state via a bundle of transitions, one for
each action a ∈ A. In Fig. 10, this bundle of transitions is simply depicted as
a single transition labelled A. One may think of this LTS being automatically
generated from a temporal logic formula that states “always (sw1 or sw2)”.

This leads to the overall abstract design

(SPECa
1 ‖ SPEC

a
2) ∧ Cdead .

Conjoining Cdead has the effect of marking all those states of SPECa
1 ‖ SPEC

a
2 as

inconsistent that have not at least one of the events sw1 and sw2 enabled. Thus,
any paths that only lead to deadlock are implicitly removed. It is straightfor-
ward to check that SPEC ⊏

∼ (SPECa
1 ‖ SPEC

a
2) ∧ Cdead holds. Indeed, the LTS of

(SPECa
1 ‖ SPEC

a
2)∧ Cdead coincides with the one of SPEC, except that each single

τ -transition of SPEC is refined by multiple, but confluent τ -transitions.

The mode logic our designer wishes to built is special in that it must en-
sure that both modes can never be simultaneously in their ON state. Again,
rather than making messy changes to the monolithic specification or the ab-
stract design, the designer decides simply to conjoin a second constraint Con.
This constraint is defined analogously to constraint Cdead but the sets A ⊆
{on1, on2, sw1, sw2} are chosen such that {on1, on2} 6⊆ A. This modifies the
abstract design to

((SPECa
1 ‖ SPEC

a
2) ∧ Cdead) ∧ Con .

and, due to Thm. 20(1), we have that this refines SPEC ∧ Con with respect to
our ready-tree preorder.

The designer now wishes to step-wise refine this abstract design into a more
concrete design which may then be handed over to the implementation team.
In particular, the constraints Cdead and Con shall be removed by refining the

30

abstract designs SPECa
1 and SPEC

a
2 to more concrete designs SPECc

1 and SPEC
c
2,

respectively, which entail the two constraints.

The designer recognises that both constraints Con and Cdead may be eliminated
without the help of new, auxiliary actions. The abstract design of the horizon-
tal mode, for example, may be made more concrete as depicted by the LTS
on the right in Fig. 10, to which we refer as SPECc

1. In its OFF1 state, the mode
simply toggles on event sw2 via the auxiliary state to the left. More precisely,
whenever the vertical mode is switched on, i.e., i.e., after an odd number of
sw2 events, the horizontal mode disables the sw1 event. When the vertical
mode is switched off, the horizontal mode enables sw1 again. Moreover, when
the horizontal mode is in state ON1, then the arrival of a sw2 event does not
have any effect.

The concrete design SPEC
c
1 indeed refines its abstract design SPEC

a
1 because of

SPEC
a
1

⊏
∼ SPEC

c
1. This is a consequence of the fact that SPEC

a
1 ready simulates

SPEC
c
1, which can easily be checked by referring to Def. 26, and that ready

simulation is included in our ready-tree preorder according to Thm. 27. As a
consequence, we obtain

SPEC ∧ Con
⊏
∼ ((SPECa

1 ‖ SPEC
a
2) ∧ Cdead) ∧ Con

⊏
∼ ((SPECc

1 ‖ SPEC
a
2) ∧ Cdead) ∧ Con

⊏
∼ ((SPECc

1 ‖ SPEC
c
2) ∧ Cdead) ∧ Con

by first refining SPEC
a
1 and then, analogously, SPECa

2. Here, SPECc
2 is defined as

SPEC
c
1 but with indices 1 and 2 interchanged.

As intended, SPEC
c
1 ‖ SPEC

c
2 already satisfies both constraints Cdead and Con,

since Cdead
⊏
∼ SPEC

c
1 ‖ SPEC

c
2 and Con

⊏
∼ SPEC

c
1 ‖ SPEC

c
2. Again, this can best be

seen via a ready simulation relation. Using Prop. 25(1) and Prop. 24 (idempo-
tence and associativity) repeatedly, we may conclude our sequence of refine-
ment steps and obtain the mode logic’s concrete design as follows:

⊏
∼ (SPECc

1 ‖ SPEC
c
2) ∧ (SPECc

1 ‖ SPEC
c
2) ∧ Con

⊏
∼ (SPECc

1 ‖ SPEC
c
2) ∧ Con

⊏
∼ (SPECc

1 ‖ SPEC
c
2) ∧ (SPECc

1 ‖ SPEC
c
2)

⊏
∼ (SPECc

1 ‖ SPEC
c
2) .

Hence, our advocated approach supports the step-wise and component-wise
refinement of abstract, mixed operational and declarative specifications to
concrete, purely operational designs.

31

7 Related Work

Traditionally, process-algebraic and temporal-logic formalisms are not mixed
but co-exist side by side [15,16]. Indeed, the process-algebra school often uses
synchronous composition and internal choice to model conjunction and dis-
junction, respectively. The compositionality of classic process-algebraic refine-
ment preorders, such as failures semantics [10] and must-testing [5], enables
component-based reasoning. However, inconsistencies in specifications are not
captured so that, e.g., the conjunctive composition of a and b is identified with
deadlock rather than ff. In contrast, the temporal-logic school distinguishes
between deadlock and ff but does not support component-based refinement.

Much research on mixing operational and logical styles of specification avoids
dealing with inconsistencies by translating one style into the other. On the one
hand, operational content may be translated into logic formulas, as is implic-
itly done in Lamport’s TLA [17] or in the work of Graf and Sifakis [18]. In these
approaches, logical implication serves as refinement relation [19]. On the other
hand, logical content may be translated into operational content. This is the
case in automata-theoretic work, such as Kurshan’s work on ω-automata [20],
which includes synchronous and asynchronous composition operators and uses
maximal trace inclusion as refinement relation. However, both logical impli-
cation and trace inclusion are insensitive to deadlock and thus do not support
component-based reasoning.

The idea to develop a specification language that combines logics and process
algebra is already advocated by Bouajjani, Graf and Sifakis in [21]. In this
paper, a µ-calculus-like logic is given, and a subset of its formulas is extended
to a set of processes, e.g., with an operator of parallel composition. One main
result is an adequacy theorem which states that two processes are bisimilar
exactly if they satisfy the same set of formulas. No behavioural notion of
refinement is investigated. In this approach, logical formulas and processes
overlap, but a logical operator like conjunction is only defined on the former,
while a process operator like parallel composition is only defined on the latter.
Such an overlap can also be found in the work of Hennessy and Plotkin [22],
where a very simple process algebra with a disjunction operator is studied.
Operationally, the respective processes can be understood as acyclic finite
LTSs (without true- and false-predicate) in our setting and the disjunction
corresponds to our disjunction; in contrast to our aims, deadlock is ignored
and the behaviour of a process consists simply of its traces. A main result is
that the disjunction operator behaves like disjunction w.r.t. the satisfaction
for some modal logic: if p or q satisfy a formula, then so does p ∨ q.

Holmström follows a related approach in [23], where he extends the modal
µ-calculus by operators of the process algebra CCS [24] and equips the mixed

32

language with an incomplete set of proof rules. The specification φ|ψ, for
example, is “refined” by process p|q if p refines φ and q refines ψ. In contrast
to our work, refinement simply means logical satisfaction and is not related to
a process-algebraic refinement relation; e.g. the conjunction of specifications is
simply defined as intersection, in the style of logical satisfaction, and does not
account for inconsistencies in the sense of our approach. In particular, each
process seen as specification is only satisfied by itself; as a consequence, the
conjunction of different processes is always inconsistent.

A seminal approach to compositional refinement relations in a mixed setting
was proposed by Olderog in [25], where process-algebraic constructs are com-
bined with trace formulas expressed in a predicate logic. In this approach,
trace formulas can serve as processes, but not vice versa. Thus, freely mixing
operational and logical styles is not supported and, in particular, conjunction
cannot be applied to processes. For his setting, Olderog develops a denota-
tional semantics that is a slight variation of standard failures semantics. Re-
markably, an inconsistent formula is given a semantics that is not an element
of the appropriate domain, as is stated on pp. 172-173 of [25].

Recently, a more general approach to combining process-algebraic and tem-
poral-logic approaches was proposed in two papers by Cleaveland and Lüttgen
[3,4], which adopt a variant of De Nicola and Hennessy’s must-testing pre-
order [5] as refinement preorder. However, Cleaveland and Lüttgen have not
successfully solved the challenge of defining a semantics that is both deadlock-
sensitive and compositional, and in which the conjunction operator and the
refinement relation are compatible in the sense of Prop. 25(1). Our work solves
this problem in the basic setting of Logic LTS. Key for the solution is our new
understanding of inconsistency, which is reflected by the fact that we consider
processes a and a+ b as inconsistent, whereas they were treated as consistent
in [4]. Observe that also in failure semantics and must-testing, a and a+ b are
inconsistent in the sense that they do not have a common implementation.

a

c

a

c cFb
∧

a a a

=

Fig. 11. Backward propagation of inconsistency.

In addition, our backward propagation of inconsistency (cf. Def. 1(3)) is in
line with traditional semantics, as is illustrated in Fig. 11. The first conjunct
specifies the second conjunct with respect to failures semantics and must-
testing, whence their conjunction, also shown in Fig. 11, should be consistent.
In fact, the conjunction equals the second process in our ready-tree semantics.

Another, very different setting aimed at increasing the expressive power of

33

process-algebraic specifications was presented by Larsen and Thomsen [26,27].
Their setting employs modal transition systems which distinguish between
required and allowed transitions, and leads to a natural notion of refinement
which is based on turning allowed transitions into required transitions. In this
model, it is also possible to define logical conjunction [28].

Finally, it must be noted that the term consistency as used here has little
in common with the same term in [29]. In that paper, two specifications are
called consistent if they have at least one implementation in common. In our
setting, this is trivially the case since ff implements any specification, as p ⊏

∼ff
for any p. However, one may rephrase the question posed in [29] for our setting
and ask under which circumstances two specifications would permit a common,
consistent implementation. According to Thm. 21(1) as well as Def. 4 and
Thm. 22, a necessary condition is for the conjunction of the two specifications
to be consistent. This condition is also sufficient: due to Prop. 24 (idempotence
and associativity) and 25, we have p∧p∧ q = p∧ q and p ⊑ p∧ q; analogously,
q ⊑ p ∧ q holds.

8 Conclusions & Future Work

This article proposed a notion of conjunction on processes. Our framework
was one of τ -pure Logic LTSs, with distinguished true- and false-states. Key
for defining the conjunction operator was the careful, inductive formalisation
of an inconsistency predicate. The implied ready-tree semantics is, in essence,
van Glabbeek’s path-based possible-worlds semantics, extended from τ -free
labelled transition systems to our framework. Moreover, the resulting ready-
tree preorder is fully-abstract with respect to a naive preorder that allows
inconsistent specifications to be refined only by inconsistent implementations.
It is also compositional for conjunction, disjunction – corresponding to internal
choice – and parallel composition with full synchronisation.

Consequently, this article solves the problems of defining conjunction which are
reported in closely related work [3,4], albeit in a simpler setting that only con-
siders process-algebraic operators on a small scale. Standard laws of boolean
algebra hold as expected, due to the fact that conjunction and disjunction on
LTSs correspond to intersection and union on ready trees, respectively. It is
the simplicity of our setting that brought the subtleties of defining a fully-
abstract semantics in the presence of conjunction to light, and which offered
a way forward in addressing the challenge of defining “logical” process cal-
culi, i.e., process calculi that allow one to freely mix process-algebraic and
temporal-logic operators [4].

Future work shall extend our results to richer frameworks. Firstly, we plan

34

to lift our requirement of τ -purity on LTS. This requires some care, as in-
terpreting disjunction as internal choice in non-τ -pure settings may lead to
counter-intuitive behaviour, as is noted in [11].

Secondly, we plan to add further standard process-algebraic operators to our
setting, such as asynchronous parallel composition, hiding and recursion. In
particular hiding is likely to prove challenging due to its transformation of
observable infinite behaviour into divergent behaviour.

Thirdly, our framework shall be semantically extended from LTS to Büchi
LTS [3] so that one may express liveness and fairness properties, and syntac-
tically to linear-time temporal-logic formulas [4]. We also wish to explore tool
support along the lines described in [30].

Acknowledgements

We thank Rance Cleaveland for many fruitful discussions and particularly for
suggesting the use of an inconsistency predicate. We are also grateful to the
anonymous referees, particular for pointing out the similarities of ready-tree
semantics to possible-worlds semantics.

References

[1] J. Bergstra, A. Ponse, S. Smolka, Handbook of Process Algebra, Elsevier
Science, 2001.

[2] A. Pnueli, The temporal logic of programs, in: FOCS ’77, IEEE Computer
Society Press, 1977, pp. 46–57.

[3] R. Cleaveland, G. Lüttgen, A semantic theory for heterogeneous system design,
in: FSTTCS 2000, Vol. 1974 of LNCS, Springer-Verlag, 2000, pp. 312–324.

[4] R. Cleaveland, G. Lüttgen, A logical process calculus, in: EXPRESS 2002, Vol.
68,2 of ENTCS, Elsevier Science, 2002.

[5] R. De Nicola, M. Hennessy, Testing equivalences for processes, TCS 34 (1983)
83–133.

[6] R. van Glabbeek, The linear time – branching time spectrum I, in: Handbook
of Process Algebra, Elsevier Science, 2001, Ch. 1, pp. 3–99.

[7] S. Veglioni, R. De Nicola, Possible worlds for process algebras, in: CONCUR ’98,
Vol. 1466 of LNCS, Springer-Verlag, 1998, pp. 179–193.

[8] R. van Glabbeek, The linear time – branching time spectrum II, in:
CONCUR ’93, Vol. 715 of LNCS, Springer-Verlag, 1993, pp. 66–81.

35

[9] B. Bloom, S. Istrail, A. Meyer, Bisimulation can’t be traced, J. ACM 42 (1)
(1995) 232–268.

[10] S. Brookes, C. Hoare, A. Roscoe, A theory of communicating sequential
processes, J. ACM 31 (3) (1984) 560–599.

[11] M. Steen, H. Bowman, J. Derrick, E. Boiten, Disjunction of LOTOS
specifications, in: FORTE/PSTV ’97, Vol. 107 of IFIP Conf. Proc., Chapman
& Hall, 1998, pp. 177–192.

[12] J. Baeten, J. Bergstra, J. Klop, Ready-trace semantics for concrete process
algebra with the priority operator, Computer J. 30 (6) (1987) 498–506.

[13] K. Larsen, A. Skou, Bisimulation through probabilistic testing, Inform. &
Comp. 94 (1) (1991) 1–28.

[14] S. Miller, Specifying the model logic of a flight guidance system in CoRE and
SCR, in: FMSP ’98, ACM Press, 1998, pp. 44–53.

[15] G. Boudol, K. Larsen, Graphical versus logical specifications, TCS 106 (1)
(1992) 3–20.

[16] M. Dam, Process-algebraic interpretations of positive linear and relevant logics,
J. Log. Comput. 4 (6) (1994) 939–973.

[17] L. Lamport, The temporal logic of actions, TOPLAS 16 (3) (1994) 872–923.

[18] S. Graf, J. Sifakis, A logic for the description of non-deterministic programs
and their properties, Inform. & Control 68 (1–3) (1986) 254–270.

[19] M. Abadi, G. Plotkin, A logical view of composition, TCS 114 (1) (1993) 3–30.

[20] R. Kurshan, Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach, Princeton Univ. Press, 1994.

[21] A. Bouajjani, S. Graf, J. Sifakis, A logic for the description of behaviours
and properties of concurrent systems, in: REX Workshop, Vol. 354 of LNCS,
Springer-Verlag, 1988, pp. 398–410.

[22] M. Hennessy, G. Plotkin, Finite conjunctive nondeterminism, in: Concurrency
and Nets: Advances in Petri nets, Springer-Verlag, 1987, pp. 233–244.

[23] S. Holmström, A refinement calculus for specifications in Hennessy-Milner logic
with recursion, FAC 1 (3) (1989) 242–272.

[24] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[25] E. Olderog, Nets, Terms and Formulas, Cambridge Tracts in Theoretical
Computer Science 23, Cambridge Univ. Press, 1991.

[26] K. Larsen, B. Thomsen, A modal process logic, in: LICS ’88, IEEE Computer
Society Press, 1988, pp. 203–210.

[27] K. Larsen, Modal specifications, in: Automatic Verification Methods for Finite
State Systems, Vol. 407 of LNCS, Springer-Verlag, 1989, pp. 232–246.

36

[28] K. Larsen, B. Steffen, C. Weise, A constraint oriented proof methodology based
on modal transition systems, in: TACAS ’95, Vol. 1019 of LNCS, Springer-
Verlag, 1995, pp. 17–40.

[29] M. Steen, J. Derrick, E. Boiten, H. Bowman, Consistency of partial process
specifications, in: AMAST ’98, Vol. 1548 of LNCS, Springer-Verlag, 1999, pp.
248–262.

[30] R. Cleaveland, O. Sokolsky, Equivalence and preorder checking for finite-state
systems, in: Handbook of Process Algebra, Elsevier Science, 2001, pp. 391–424.

37

