Safe Reasoning with Logic LTS

Gerald Liittge*, Walter VogleP

8Faculty of Information Systems and Applied Computer Seiridniversity of Bamberg, 96045 Bamberg, Germany
bnstitute for Computer Science, University of Augsburd,3bAugsburg, Germany

Abstract

Previous work has introduced the setting of Logic Labellean§ition Systems, called Logic
LTS or LLTS for short, together with a variant of ready sintida as fully-abstract refinement
preorder, which allows one to compose operational spetidita using a CSP-style parallel
operator and the propositional connectives conjunctiehdisjunction.

In this article, we show how a temporal logic for specifyirdety properties may be embed-
dedinto LLTS so that (a) the temporal operators are comipasitfor ready simulation; (b) ready
simulation, when restricted to pairs of processes and faspgoincides with the logic’s satis-
faction relation; (c) ready simulation, when restricteddomulas, is entailment.

The utility of this setting as a semantic foundation for ntbaperational and temporal-logic
specification languages is demonstrated by means of a serplaple. We also adopt the con-
cept of may- and must-transitions from modal transitiontesys for notational convenience,
and investigate the relation between modal refinement orahtoghsition systems and ready
simulation on LLTS.

Keywords: labelled transition systems, ready simulation, tempagild, safety properties,
heterogeneous specification, modal refinement
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1. Introduction

Recently, the setting dfogic Labelled Transition Systenaso referred to as Logic LTS or
LLTS for short, has been introduced [1, 2], which combinesraponal and logic styles of speci-
fication within a unified framework. It includes operatiofia., process-algebraic) operators [3],
such as parallel composition and hiding, and the propesititogic operators conjunction and
disjunction. LLTS extends labelled transition systems byreonsistencyredicate on states,
where an inconsistent state, or process, denotes emptyibehhat cannot be implemented.
Inconsistencies may arise when conjunctively composimggsses with diierentready sets

UThis article is based on an extended abstract that appeakéNielsen, A. Kucera, P. Bro Miltersen, C. Palamidessi,
P. Tuma and F. Valencia, eds., 35th Intl. Conf.@urrent Trends in Theory and Practice of Computer Scigi@@F-
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i.e., initial action sets [1]. The refinement preordess adapted for LLTS is a variant aéady
simulation[4, 5, 6]. Itis fully abstract with respect to a referencequoier that relates consistent
implementations only to consistent specifications [2], iteis the coarsest compositional pre-
order with respect to parallel composition and conjunciibien taking consistency into account.
Most notably, the setting justifiessamulation-typepreorder when starting from the binary ba-
sic observable ‘consistency’. The preorg@ess is also compositional regarding other operators,
namely prefixing, hiding, and external and internal choidegre internal choice coincides with
disjunction.

This article extends LLTS by temporal-logic operatorsyéhe fulfilling our ultimate goal
of combining process-algebraic and temporal-logic opesah a uniform compositional refine-
ment setting, in which logical satisfaction and processiegfient can be used interchangeably.
The temporal logic of interest is a branching-time logidopwing one to specify the most im-
portant class of temporal properties in practice, safety propertiesover atomic propositions
that refer to the enabledness of actions; in particular, eresicler the standard temporal oper-
atorsalwaysandunless(weak unti). These operators will be embedded into LLTS such that
the logic satisfaction relatiol is compatiblewith Crs. This means that, firstlyp E ¢ if and
only if p Crs ¢, for any proces® and temporal-logic formula; secondly, ready simulation is
compositionafor the temporal operators. Moreover, when restricted tmfdas,Crs coincides
with entailment The resulting mixed setting satisfies standard procegbhedic, propositional-
logic and temporal-logic laws, as one would expect, plus l@ve that refer to both logic and
temporal operators. For employing our LLTS setting in pragtthis article also shows how the
idea of may- and must-transitions in Larsenisdal transition systen(§] may be adopted to
LLTS. This allows one to specify ranges of ready sets coniypabts achieving representation
economy when specifying systems using LLTS; it also perthéformal investigation as to how
modal refinemerZ] on modal transition systems and ready simulation on LLtdISte.

Our LLTS setting is unique in the literature in that it alloase tofreely mix operational op-
erators, propositional-logic operators and temporalelogerators, while still permittingom-
positionalreasoning, as discussed in the related work section. Ouk isastrongly inspired
by current research into novel notations and methodoldgiedeveloping software, where re-
quirements and designs of behaviourally complex systeesegularly specified using a mixture
of declarative and operational languages, allowing forttheeable transitioning from software
requirements to designs. At the requirements level, popatguages include restricted forms
of English or simple spreadsheetketlarative, also temporphnd block diagrams or state ma-
chines pperationa). At design level, UML class diagrams combined with the @b{eonstraint
Language [8] declarative, partly temporaland Statecharts [Qoperationa) are frequently
used [10]. The setting presented in this article serves esemantic backbone for a related,
industry-supported research projedRéfinement Patterns for Contractual StatechaEPSRC
grant EPE0348531) which extends Statecharts with temporal-logic-styletcacts and employs
ready simulatiortrs for compositional model checking. Indeed, our main theopeaving the
compatibility of = with Crs (Thm. 15) provides a formal basis for compositional verifima.

Organisation. The remainder of this article is organised as follows. Seeviits the setting of
LLTS introduced in [1, 2], including: the notion of inconw@acy; parallel, conjunction and dis-
junction operators on LLTS; ready simulation on LLTS; aniil ébstraction [2]. Sec. 3 presents
our integration of temporal-logic operators in LLTS and y@® several key results, foremost
compositionality, compatibility, entailment and variolasvs. The utility of this extension for
developing reactive systems is then illustrated in Sec. #bgns of a small example. Sec. 5
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adopts the concept of may- and must-transitions from maedakition systems as a convenient
shorthand notation for LLTS, formally relates modal refimerinto our ready simulation, and
discusses conjunction in modal transition systems in tite bf our work. Further related work
is discussed in Sec. 6, while Sec. 7 presents our concluaimhslirections for future work; in
particular, Sec. 7 highlights the challenges of extendimgsetting so as to be able to also ex-
press liveness. Finally, the proofs of some lemmas employ&ecs. 3 and 5 are contained in
the appendix, so as not to unnecessarily disrupt the flowaafing.

2. The Setting of Logic LTS

We begin with briefly recalling the setting of LLTS, togethweith several results and nota-
tions that are relevant to this article.

2.1. Inconsistency

LLTS considersnconsistencieshat may arise under conjunctive composition as first-class
observables. A conjunctively composed state between tawasses is marked as inconsistent if
one dfers an action that the other cannot perform, i.e., if the ggses have flerentready sets
Consider the processesq andr in Fig. 1(a). Procesp andq specify that exactly actioa and
resp.b is offered initially, i.e., their ready sets af@ and resp{b}. Similarly, r specifies thaa
andb are dfered initially and thus has ready qatb}. Hence,p A g andp A r areinconsistent
(or falsg), and should be tagged as such. Formally, our variant of LillSb& augmented by
aninconsistency predicate,Fso thatp A q € F andp A r € F in our example. Observe also
that, e.g., according to failures semantics [Idhndq (resp.p andr) do not have a common
implementation.

@p g p r b) p ¢
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Figure 1: (a)—(b): Conjunctive composition; (c)—(e): Baekd propagation.

Most notably, inconsistencies may propagate backwardgjalansitions. For example, in
the conjunctionp’” A g shown in Fig. 1(b), both conjuncts require actiarto be performed,
whencep’ A g should have aa-transition. But this transition leads to an inconsistéatesand,
in the absence of any alternatiegtransition leading to a consistent stafg,A ¢ must itself
be considered inconsistent. In this spirit, inconsistgqmopagates backwards for the process in
Fig. 1(c), whereas it does not for the processes in Figs. drfd)1(e). Note that, in Fig. 1(e),
actionsr are used to specify a disjunction between alternatives;énayur treatment df corre-
sponds to the law thdialseis the neutral element with respect to disjunction.



2.2. Formal Definitions

Let A be a non-empty alphabet of visible actions with represietsa andb. With T being
a distinguished, internal action, &t denoteA U {r} with representatives andg. A labelled
transition systemor LTS, is a triple(P, —, F), whereP is the set ofprocessegstates)— C

Px A, x Pis thetransition relation andF < P is theinconsistency predicat&Ve write p N p’
instead of(p, @, p’) € — andp — instead oflp’. p — p’, and denote a transitiop — p’
with p,p’ ¢ F by p e p’. Further, we let/ (p) stand for theeady sefa € A | p ) of p. A
process that cannot engage inratransition, i.e. ,p7L> is calledstable

We mtroduce Weak transmons by writing (p = p if p o p’; and (i) p => p’ if
Ip.P.p = P N If = p’. If all processes along acomputatlpn: p’ orp = P,
including p and p’, are consistent, we writp =>F p’ and respp :F p’; if in addition p’ is

stable, we writep =E>| p’ and respp=a>| p’. We also introduce a notion to deal witlivergence
e., infinite sequences aftransitions, where divergence is viewed as catastroplaigprocess

cannot stabilise; here, procgssannot stabiliséf Ap’. p_;>| p.
Moreover, we require an LTS to satisfy the followirepurity condition: p SN implies

Jae Ap —a>, for all p € P. Hence, each process represents either an external anahter
(disjunctive) choice between its outgoing transitionsisTstriction reflects the fact that ready
sets can only be observed at stable states, and is justifj@fl ibLTSs must satisfy two further
properties, of which the first one formalises our backwaappgation of inconsistencies:

Definition 1 (Logic LTS [1]). An LTS(P,—, F)is aLogic LTS, or LLTS for short, if
(LTSl) peFifdacI(pPVpePp-5p = peF;
(LTS2) pcannotstabilise= peF.

2.3. Operators on Logic LTS

LLTSs are equipped with various propositional-logic andgasss-algebraic operators which
were introduced in [1, 2]. Thearallel operator||a on LLTS, for a synchronisation alphabet
A C A, is essentially the one of CSP [11], but it favomrFansitions over visible transitions so
as to preserve-purity. Naturally,p ||a qis inconsistent ifp or g is inconsistent. Formally:

Definition 2 (Parallel operator [2]). The parallel composition of the two LLT8R —p, Fp)
and(Q, —q, Fq) for the synchronisation alphabet@& A is the LLTSP ||a Q, —py.q, Frj.0):

e PllaQ=agt{plladlpeP,geQ}

e —p,0 is determined by the following operational rules:

T or Q7L>Q) = pllaq (_Y’PHAQ P llag
g0, a¢A (@=t0rpisp) =  plagd—puoPlad
P-5pp.qg—50q.acA =  plagd—spueP llad

p——pp,a¢A (a

. p||Aqup||AQifpeFporquQ.



Theconjunction operaton on LLTS is a synchronous product (or parallel compositiam) f
visible transitions and an asynchronous productftansitions, and also favourstransitions.
Proces A qis inconsistent ifp or g is inconsistent; or ifp andq are stable but have fiierent
ready sets; or if it becomes inconsistent by backward pratiag Formally:

Definition 3 (Conjunction operator [1]). The conjunction of the two LLTER —p, Fp) and
(Q, —0Q, FQ) is the LLTSP A Q, —PAQ> Fp/\Q>:

e PAQ=¢{pArglpeP,geQ}

e —p,q is determined by the following operational rules:

Pp—ppP =  PAQ—prq P AQ
g—od =  PAQG—pQPAY
Ppp.d-50q =  pAG-Sp P Al

e Fp,q is the least set containing each/pq that satisfies at least one of the following
conditions:

(C1) peFporqe Fg;

(C2) pAg-pagandI(p) # I(a);

(C3) Ja e I(PAQYP AQ.PAG—prq P AG = P ACQ €Fprg;
(C4) p A g cannot stabilise.

Here, a conjunction is inconsistent if a conjunct is incetesit (cf. Cond. (C1)), and Conds. (C2)
and (C3) reflect our intuition of inconsistency and backwamapagation. Cond. (C4) is added
to ensure (LTS2); note that this condition is not automdienforced since it is1ot true that

p A g can stabilise if botlp andq can stabilise.

Thedisjunction operator is an internal choice operator, wheye g is inconsistent if botip
andq are. Fig. 1(e) depicts a disjunction of an inconsistent @ssavith a consistent process that
can engage in action; hence, the disjunctive process is consistent. Tlpus,q essentially is
a process with twar-transitions top and respq; correspondinglyr is not so much seen as an
internal action in our setting but primarily indicates aitmj disjunct.

2.4. Refinementon Logic LTS
Our refinement preorder is a variant of ready simulation [46] &nd thus ensures refinement
via successively resolving choices (hondeterminism):

Definition 4 (Ready simulation on LLTS [2]). Let(P,—p, Fp), (Q, —q, Fg) be two LLTSs.
RelationR C P x Q is astable ready simulation relatipor stable rs-relation for short, if the
following conditions hold, for anyp, q) € R and ac A:

(RS1) p, g stable (RS3) p=a>| pP = 3Iq. q=a>| g and({p’,q)eR

(RS2)p¢Fp = q¢Fq (R peFp = I(p)=1(0)

We write Pegsd if there exists a stable rs-relatioR such that(p, q) € R. Further, p isready

simulatedby q, in symbols Zrsq, if Vp'. p_;>| pP = dq. qé{q' and g ISH Finally, we

let =rsstand for the kernel afrs
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While we allow transitions leaving inconsistent stategythre ignored in the above definition.
Thus, one may remove such transitions without changingelevant behaviour of processes;
for technical convenience, we do not include this additioramalisation when defining our

operators. The above operators satisfy the following ptegsewith respect t@gs:

Proposition 5 ([2]). Let p g, r be processes,’ [trsq and AC A.

(1) Compositionality: p’" ArCrsd AT, P'VI Crsq VI, P'llar Crsd'llar;
(2) Ais conjunction:  rErspAQ <= I Crsp and rtrsdq;

(3) visdisjunction: pV QCgrsl < pLCrsrand qCgsT.

The second item above demonstrates thas indeed conjunction: clearly, a process should
implement a conjunction if and only if it implements both garcts.

In addition, we have shown in [2] that relatiars is fully abstract for the preorder:, which
is defined byp Cr gifand only ifg € Fo = p € Fp (i.e., an inconsistent specification
cannot have a consistent implementatpas refinement). Formally:

Theorem 6 (Full abstraction [2]). The largest precongruence withity, with respect to paral-
lel composition and conjunction, equalgs

This means that our simulation-type preorder is justifiepdy by starting from a binary basic
observable, namely consistency; moreover, the preordampositional for parallel composi-
tion and conjunction, which is also true for other operaterg., disjunction, prefixing, external
choice and hiding [2].

3. Temporal Logic & Logic LTS

The temporal properties we embed in LLTS are essentialls#ifiety properties of the uni-
versal fragment of the temporal logaction-based CTI[12], adapted to our setting. This is the
largest fragment we can hope for since, firstly, LLTS is bamedtandard LTS, without Biichi
annotations or similar acceptance conditions; henceefstdte LLTS is not expressive enough
for encoding liveness (or fairness) properties. Secomddywish for the logic satisfaction rela-
tion | to be compatible witltrs, i.e.,p E ¢ < p Cgrs ¢, for any procesp and formulag
(cf. Thm. 15 below). Hence, by transitivity afrs, we have thap Crs q andq E ¢ implies
p E ¢, i.e., the implementatiop with the ‘smaller’ behaviour has to satisfy more formulaarth
the specificatiom. This justifies our focus on theniversalfragment.

3.1. Syntax, Satisfactiafk Characterisation
We consider the following sef of temporal-logic formulas:

¢ u= ttiflena)|dis@) | ¢Vvelong|[ae| o] oWe

Here, the atomic propositioren(a) anddis(a) denote the enabledness and resp. disabledness
of actiona, and ], 0 and W are the usuahext always(generally andunless(weak unti)
operators. The latter can be seen as a weak version of tHerufi2]. In addition, formulatt
(resp.ff) may be derived asn(a) v dis(a) (resp.ena) A dis(a)); moreover,[J¢ is equivalent

to ¢ W ff (cf. Sec. 3.3). Note that havireg(a) anddis(a) in the logic is similar to positive normal
forms in state-based logics.



The meaning of formulas is defined via a satisfaction refgtio Recall that, in our setting,
actiont is not so much seen as an internal action, but an instablegspds a ‘disjunction’;

hencep E ¢ should mean thaby = ¢ for all ‘disjuncts’ po of p, i.e., for eachpy with p_;>| Po-
Thus, we defing- as follows, Whereé} stands fot e 4 =a>|:

Definition 7 (Satisfaction relation). Given an LLTS with state set P, the satisfaction relation
E c Px ¥ is defined by the following rules:

pEtt always

pEf if peF

pEena if Vpo.p=ip =

pE dis@) if Ypo.p=={pp = po/>
=

PE VY if Vpo.p=po (Po ¢ OF po k= )
PESAY if Vpo.p=Ipo = (pokE¢andpkE y)

pE[ale if ¥Vpo,p:. p=€‘l D0=a>| pr = pP1E¢
. € A A
pEDO¢ if Vpo,Pr..., pn.(P={Po=AP1... ={Pn = PaE¢)
) € A A .
PEOWY if Vpo,pr,....pn.(P={po=AP1... ={pPn = (PnE¢ Or Ji<n.p Ey))

This definition coincides for-lessp with the standard one but, in contrast to processes within
LTS, ffis satisfiable, namely by inconsistent processes.

To motivate the quantificationvo. p=€>| po” for the v-case further, consider that must
be defined such that the procgsshat has one initiab-transition followed by ab-transition,
satisfies formulad]enb). Similarly, the procesq that has one initiah-transition followed by a
c-transition, should satisfyg]en(c). Since we aim for a setting in whi¢chmay be freely replaced
by Crs and sincecrs is a precongruence, we must hagve g = [alen(b) v [a]len(c). In a classic
definition of satisfiability, this would meapVv q  [a]lenb) or p Vv g £ [a]len(c), which are both
clearly false. In addition and as claimed above, each psogésdeed satisfieen(a) v dis(a)
since each ‘disjunctpg of p is stable and hence either can engaga (ne., satisfieen(a)) or
cannot (i.e., satisfiedis(a)).

As an aside and provided thatandq belong to LLTSs that arénitely branchingwe get a
Hennessy-Milner-style characterisationm{s; here,frs are theessential formulgsamely the
formulas inF that do neither contain operatoxsC] and W, nor sub-formulat anddis(a), i.e.,

a
Po—

¢rs = fflend) | ¢rsV ¢rs | [Alprs.
Theorem 8 (Characterisation).pCrsq <= V¢ € Frs 0 ¢ = pE ¢.

This characterisation is pretty much a corollary to an agals result of Bloom [4], and is thus
not proved here. It should be noted that, in his thesis, Bloonsidered a characterisation based
on the opposite implication than the one we require. Cooedijmgly, he used the dual fragment
of formulas, employinga)-modalities instead ofd]-modalities.

3.2. Embedding in Logic LTS

We embed our temporal formulas into LLTS and present theresiompatibility result
between= andCrs. The embedding is conducted along the structure of formHasmulatt
7
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Figure 2: Embedding of temporal-logic formulas into LLTS.

corresponds to the initial state of the LLTS sketched in E{g), which can nondeterministically
select an arbitrary ready s&tC A via ar-transition to proces#é. From there, it can engage
in any transition labelled with an actidne A and return tdt. Hence,tt is a process that can
simulate any other process, and is thus indeed the desindgeigal’ process. Formulgt is
trivially mapped to the inconsistent process depicted ¢ Z{b), which can only ready simulate
an inconsistent process. Formaliga) corresponds to the initial state of the LLTS in Fig. 2(c).
This can select any ready s&ttontaininga by silently moving to procesa, from where it can
engage in d-transition, for anyb € A, to tt. We embed formulais(a) analogously, where we
requirea ¢ A instead ofa € A; see Fig. 2(d).

Formulag A y (resp.¢ V ¢) is embedded by conjunctively (resp. disjunctively) cosipg
the LLTSs of the embeddings g¢fandy, using operaton (resp.v) on LLTS. The embedding of
a formula B]¢ is sketched in Fig. 2(e). Again, the initial process may c®oan arbitrary ready
setA. The corresponding proce8scan engage in b-step, for anyb € A\ {a}, tott. In addition,
if a € A, there is ara-step to the initial state af's embedding. Hence, ararderivative of p]¢
behaves ag, whereas arbitrary behaviour is permitted foifeliently labelled derivatives.

We now definél- and W -operators on LLTS, which facilitate the straightforwandl@edding
of formulasd¢ and¢ Wy

Definition 9 (OJ-operator, “always”). Let(P,—p, Fp) be an LLTS. TheriIp, for p € P, is
procesqp) in LLTS{OOP, —p, Fop), where:

e 0P =g {B=(p1. P2, ..., pn) | N>1, V1<i<n. pieP} is the set of finite vectors over P.
e —p is defined by the following operational rules:

piéppi/ = (pl’-“,piw-;’;pn)_T)DP(pl""’pi,""’p”)
Vi. pi —p B = (P1,---» Pn) —0op (P -+ PR P) -

e Fop is the least set of finite vectors such thiat (p1, ..., pn) € Fop if any one of the
following conditions holds:
(BF1) 3i.p € Fp;
(BF2) pstable bufli, j. 7(p;) # Z(p;);
(BF3) JacI(P)VP'. Pp—pp B’ = P €Frpi
(BF4) p cannot stabilise outsidedr, i.e., via a sequence of transitions over states that
arenotin Fpp.



In the sequel, we use the convention tiga¢ (1P has componentpy, py, ..., pn. Observe that
(0P, —p, Fop) is indeed an LLTS and thatbehaves as the conjunctigyp p;. Intuitively, the
above construction addsto the process vector after every visible step. To illusttae above
construction, we sketch part of the LLTSGENa) in Fig. 3.

({ac}, en(a))

(tt, {a,c})

Figure 3: Sketch of the LLTS dflen(a).

Although the employed vector notation is convenient forvorg compositionality, its use
immediately leads to an infinite state space. However, wéddwave used procesetsinstead
of process vectors, which would result in ars-equivalent definition. This would make the
process sets aflP finite if P is finite, and permit an implementation of theoperator.

Definition 10 (W -operator, “unless”). Let (P, —p, Fp) and (Q, —q, Fo) be LLTSs. Then,
pWaq, for pe P and ge Q, is a process within the LLT® WQ, —pwa. Fpwg), Where:

e PWQ =¢ {pWaqj UDOP U (OP x Q) with OP = {p|n>1, V1<i<n. pi € P).

e —pyq is defined by the following operational rules:

always pwq ;>PWQ 0.
always PWq —pwao (p)
P —;w Pl = (P1-os P Po) ~pwo (Pis s Pls-- s Pr)
Vi.pp—pr B = (P1,---Pn) —pwq (P} > Ph)- D
Vi p—p Pl = (P1,...,Pn) Zpwo (PL-- -5 P P)
9 —eq" = ((Pr.--.. Po). &) —pwo {(PL-... Pn). A7)
) P —;m P = ((Pr.-...Pn). ) %pwg ((PLo- e P ea P0). )
q —qq”andVi.pi—p pi = ((P1,--->Pn)d) —pwq ((PL----PR).A")-

e Fpwq is the least set such thata Fp g if any one of these conditions holds:
(RF1) r=porr=(p,q)sothatdi.p e Fp,orr =(p,q)andd € Fg;
(RF2) ris stable, equalg or (g, q’) anddi, j. 7(pi) # Z(p;),

orr ={f,q) stable anddi. 7(p) # Z(q");
(RF3) Fa e I(NVI'.T —Spwol’ = I’ € Fpwo;
(RF4) r cannot stabilise outside dw .

This LLTS is well-defined. Processég, q) should be thought of a&; pi A g. Intuitively, pwq
behaves similarly ta1p; however, initially and at any stable state along a compriait may
decide to withdraw from conjoining in favour of a one-& conjunction withg.

9



Theorem 11 (Compositionality). Let p Crs 0, I Crs S and a€ A. Then,[a]lp Crs [a]q,
OpCrsgand pWr Crsq W s.

An essential point when proving this theorem is the reagpabout inconsistencies; e.g., for a
OP LLTS, we adapt the concept of witness of [1]:

Definition 12 (O-witness). A O-witnessfor CIP is a set WC [P such that, for allg € W, the
following conditions hold:

(W1)  Vi.pi ¢ Fp;

(W2) pstable= Vi, . Z(p) = I(pj);

(W3) Ve e I(P)IAF". P—rop P’ andp’ € W;

(W4) pcan stabilise in W, i.e.,

3P1,... P B —0p Pr —0p - .- —0p Prrooe and Vil pi e W.

The following straightforward property dfl-witnesses gives us a useful tool for proving that
alwaysprocesses are consistent:

Proposition 13. g ¢ Fop if and only if 3 0-withessWp e W.

Proor. Direction “=" follows from the fact thatgp, the complement df gp, is anlJ-witness.
For direction “=" we note thaiW satisfies the conditions &-p, whenceFgp € W. O

The concrete witness needed in fhecompositionality proof is the following:

Lemma 14 (Concrete witness).Given stable p¢ Fp and qe Q with [JSHC the set W=y
Wi UW, € 0JQ is alJ-witness, where

Wi =gt (0= (02....0q0) [IB=(P1,.... Pn). P ¢ Fop and¥i. pi T Gi};
Wo =g {d:(ql,...,qn)|3(j’=(q’l,...,q;).(j’erandVi.qi=E>|qi’}.

The proof of this lemma is straightforward and containedhi@ appendix. A similar witness
concept and construction is needed for proving Wtieoperator compositional. We are now in a
position to prove Thm. 11:

Proor. [0f Thm. 11]Note that the compositionality results for parallel conipos, conjunction
and disjunction were stated and proved in [2].

We start df with sketching the compositionality proof foa][ Firstly, stable procesA in
the encodingd]P of [a] p is matched by stable proceAsn the encodingd] Q of [a]qg, showing
Conds. (RS1) and (RS4). For Cond. (RS2), we observl:dfF5q, then we must hava € A

andq € Fq, thusp € Fp andA € Frgp. Now, we assumeé\ ¢ Fgp; if A —a>F p_i>| Po
then, sincep Crs q by assumption, there is songg with == go and po Erglo; furthermore,
A —a>F q=E>|qo in [a]Q. Forb € A\ {a}, we haveA —b>F tt in both [a]P and [@]Q. Thus,
Cond. (RS3) holds, too.

We now turn to proving compositionality regarding operaibrf p € Fp, thenOp Crs (g
is trivial. Now considerp ¢ Fp (and hencey ¢ Fg). Since the processes on whiClp can

stabilise are exactly those)(Wwith p_;>| p (and similarly forg), we only have to establish the
following statement:
10



Let p Crs q be given, i.e., for allp'with p=E>| P, there exists someg Such thalq:em and
ﬁgRSq. We show that p)“ERS(Q) in OJP and resp]Q. To do so, it is sfficient to prove that
R =dat {BDIP=(Ps,-...Pn), d= (A ..., qn), YIsi<n. pi S G}
is a stable rs-relation. Obviousk(p), (§)) € R. We verify Conds. (RS1)—(RS4) of Def. 4, using
the O-witnessW; U W, of Lemma 14:

(RS1) Here,gandd are stable since af andg; are stable due tpi £ ;.

(RS2) If p ¢ Fp, thend € W; sincep; S for alli. Henced ¢ Foq by Prop. 13.

(RS3) Let ri=a>| p,ie., @....Ppn) —a>F P --» P p)_;>|(p'1,..., pL, ) = @ for some suit-
ably choserp;. Hencep, =E>| p; and respp:E# P, as well asp; i>p B, foralll<i<n,

and Cond. (RS3), there exigtandq; such thag; —a>F o =E>|qi’
andp/ £ o, and alsop_ g by assumption. Thusj =2 @@y, ---.0r. Q) = q =g
(@ -...0, 0 5. Sincep’ ¢ Fop, we haved € Wi, whence all processes along the
computation @, ..., Ty, Q) = g are inW,. Finally, d ¢ Fog by Cond. (RS2) above.
Summarising and referring to Prop. 13, we hdvé{ g and, obviously{p’,d) € R.

(RS4) The premised ¢ Fop and the stability off by Cond. (RS1) imph (p) = I(p1) =... =
I(pn)- Thus, byp Crsi according to the definition oR, we haveZ (p;) = Z(q;) for all i.
ThereforeJ(B) = 7(qu) = ... = 7(qn) = Z(q) by our operational rules.

Therefore, byp; ERSqi

This completes the compositionality proof with respecti@il-operator. The proof for th&v -
operator follows along similar lines; it is omitted herecgrit does not require any new concept
but only additional notation and case distinctions. O

We now turn to stating and proving the most important resiuthis article:

Theorem 15 (Compatibility). Let p be a process angla temporal-logic formula inF. Then,
PE¢ — pLrsé.

The proof of this theorem uses the following lemma for degiiith process vectors in the case
that¢ = Oy; its proof can be found in the appendix.

Lemma 16. Letd = (Q1....,qn) € 0¥ and pCrsd. Then, pcrsq forall 1 <i < n.

Proor. [of Thm. 15](Hint: This proof is reused in connection with Table 2 below; thedeza
might want to postpone reading this proof until the lattetgpaf Sec. 3.3.)

The proof is by induction on the structure #f Note that the cases = tt and¢ = ff are
trivial, the casep = dis(a) is analogous to the one fgr= en(a), and the case fap = ¢ Wy,
follows along similar lines to the one fa@r= Cy. Therefore, we focus on the remaining cases:

e ¢ =en@a): (“=") Let p E ena), i.e., p_;>| po implies po —a>, for any po. Then,p Cgrs
er(@) sincepo < s 7 (Po)-

(“<=") For all py such thatp= py we must have some action s&icontaininga with
PoS A Sincepo ¢ F, this means by Cond. (RS4) thate I(po), and by (LTS1)

thatpg —a>F. Hencep E en(a).
11



e ¢ =[a)y: (“==") Let p  [a]¥ and consider some procggswith p=€>| po- By the defini-
tion of = we know thatp; E  for all p; such thaipg =a>| p1. Hencep; Crs ¢ by induction
hypothesis, which implieg =€>| g, for someq with pg Crg - We argueno ERSI(pO) by
showing that{{po, 7 (po))} U Crs is a stable rs-relation. Obviously, the p&am, 7 (po))
satisfies Conds. (RS1), (RS2) and (RS4) of Def. 4. RegardonglC(RS3), we have for
all po=b>} p1 with b # a (andb € 7(po)) thatZ(po) =b>|tt andp; S ¢ Furthermore, for

a a € .
all po =} p1, we havel (po) — ¢ = op With p; S, 01, as noted above. Altogether, we
thus obtainp Crs [a]y.

(*<") Let p Cgrs [a]y. Therefore, Whenevqn=€>| Po, we have ﬁ]w:ejA for someA
with po SIS Obviously,A = Z(po). By our LLTS encoding of§]y and Cond. (RS3),

Po =a>| p: for any suchp; impliesy _;>| g: for someq; with 7(po) _i>| g: and py ISHNC I
Hence,p1 Crs ¥ and, by induction hypothesip; | . Thereforep k= [a]y.

e p=y Vi (“=")Let pE Y1V ¥>. Wheneverp:e:l Po, thenpo E ¥1 or po E Y2, i.e.,
Po Crs Y1 OF Po Crs ¥2 by induction hypothesis. Assume w.l.0.g. thpgtCrs ¥1, whence

Y= do for somego with Po < do. BY 1 V 2 = do, We concludep Crs ¥ V 2.

(“<=")Let pCrsy1ViY andpé| Po. Therefore, w.l.o.gy1 Vo _;>| 0o due toy é| do
with po Srglo- Hence,po Crs 1 and, by induction hypothesigy E 1. This implies

PE Y1V Y.

o ¢ =y ANyo: ("=")Let pE Y1 AY. Wheneve|p=E>| Po, thenpg | 1 andpg E ¥», i.e.,
Po Crs ¥1 andpo Crs ¥2 by induction hypothesis. By Prop. 5(2), we gRtCrs 1 A ¥o.

Hence,p Crs ¢1 A 2.

(*<") Let p Crs ¥1 A Y2 andp ==} po. Thus,po Crs ¥1 A ¥ and, by Prop. 5(2), we can
now conclude thapy Crs 1 andpg Crs ¢2. Hence, by induction hypothesigy = ¢1
andpo [ 2 and thusp k= 1 A .

e ¢ = y: Recall thatij stands fol e n =a>| In this part of the proof, we writpi{ p’
Wheneverp=E>} poi:} p1... i# pn = P’ withn > 0.

(“=") We first prove that

A .
R =gt {(P". DI p=Ip”, e O, ¥i.p" T o}
is a stable rs-relation. We verify Conds. (RS1)-(RS4) of Bef

(RS1) p” and allqg; are stable, whenagis stable, too.
(RS2) Here, itis stficient to show thatV; U W, is a witness, where

A .
W, =4 {GeO¥|3p’. p=ip” andVi.p”’ ERSqi}
W, =g {deO¥|3d €W, Vi.q={q}.

12



The proof is similar to the one of Lemma 14, except for the podW3) in caser #
7. Here,q N meansj € W, andg; =, for all i. Sincep” ¢ F, we getp” -,
by Cond. (RS4), angy” _i>| p”’. By Cond. (RS3), there exigf” andq; such that
O —F q’ _i>|qi’ andp” L. 0. Moreoverp” = ¢, whencey” Crs y by induction
hypothesis, and therefop@” ERSwo for somezp:Ejpo. Thus, @7 ...q. o) € W]
andd - (a7, ..., gy, ¥) € W,

(RS3) Let p” =a>} p”’. Then, for somey, g :aaiqi’ and p”’ ©

Crsdf by Cond. (RS3) for

p” Crs¥i- Furthermore,p% p”’ implies p””’ E ¢, i.e., by induction hypothesis,
p"” Crs ¥ and p"'ERSl//o for somezpéw/o. Thus, =2 (ay.....an.¥) =

(q’l,...,qg,lpo)#, for suitably chosenyy, ..., q;, and{p”,(Q},...,dn o)) € R.
Therefore, we haveq(, ..., d;, o) € Wi, and all processes along the computation
are inW,. By Prop. 13, this prov®=a>| Q... o Yo)-

(RS4) Let p” ¢ F. Then, Cond. (RS4) fop” Creli yields 7(p”) = Z(q) for all i, i.e.,
I(p”) = I(q) by the definition of 1.

Now, p Crs Oy by the following. Firstly,p |  implies p Crs ¢ by induction hypothesis.
Together Withp=E>| Po, this guarantees the existence of safgesuch thalm:eahpo and
Po Spg¥o- Then, () = (vo) in ¥ and(po. (wo)) € R. Thus,p Crs () = v

(“<") Let p==4 p'. Then, byp Crs O, there exists som@’ such that ) — i/ (per-
forming the same sequence of visible actions) @hQRSJ’. By Lemma 16, we have

P Cps¥i for all i. By our operational rules, the last componentof ¢ is such that

W=€>|W- Hence,p’ Crs ¥ and, by induction hypothesig; = . Thus,pij p’ implies
P EY, e, pkE Dy .

The classic property of entailment is now a corollary to ThSr.
Corollary 17 (Entailment). ¢ Crsyy < Vp. pE¢ = pE .

Proor. Let¢ Crsy andp = ¢. Then,p Crs ¢ Crs ¢ by Thm. 15, and we are done by transitivity
of Crs. Conversely, ifp = ¢ impliesp [ ¢, thenp Egs ¢ impliesp Crs ¥, again by Thm. 15,
for all p. Hencep Crs v when settingo = ¢. O

3.3. Laws for Logic LTS

Our setting of LLTS satisfies many desirable, and often ebguedaws. Firstly, considering
the “process-algebraic” fragment of LLTS, e.g., our CSRegparallel composition operatk is
commutative and associative for fixed action ets A, as can easily be seen from its definition
(cf. Def. 2).

Regarding the propositional-logic fragment, we first retat v is disjunction anda is
conjunction (cf. Prop. 5). Furthermore, disjunction andjoaction are commutative and asso-
ciative. Note that associativity of conjunction followsifn Prop. 5(2)r Crs (p1 A p2) A p3 &

I Crs p1 @andr Crs p2 andr Crs Ps © r Crs P1 A (P2 A p3). Applying this equivalence for

13



Table 1: LLTS laws of propositional logic

(1a,b) PAP=rsP PV P=rspP (Idempotence)
(2a,b) pA(pvd) =rsp  PV(PAQ)=rspP (Absorption)
(3a,b) pVif=rs P pAtt=rsp (Neutral elements)
(4a,b) PASf=rsff pVtt=gstt (Null elements)
(5a,b) PAQCRs P PCrsPVQ

(6) PAQ=rsP & PVQ=rs( © PErsq
(7a,b) ff Crs P PCrstt

Table 2: LLTS laws of temporal logic

(8) [al(pAq)=rs[alpAlalq (13) en(@) vdig(a) =grstt

(9 O(pArg)=rsOpAlq (14) en(@) A dis(@) =rs ff
(10) Op =rs p A [AI(Op) (15) dis(a) A [a]p =rs dis(a)
(11) Op =rs pW

(12) PWq=rsqV (pA[Al(pWQ))

r = (p1 A p2) A pzandr = p1 A (p2 A p3) shows the claim. In addition, disjunction and con-
junction are distributive and satisfy the standard lawsroppsitional logic shown in Table 1.
Distributivity and Laws (1), (4a), (5) and (6) are proved2}.[Laws (2a) and (2b) can be shown
with Prop. 5(2) and (3), distributivity and idempotencewisa(3a) and (7a) are direct from the
definitions. For Law (7b) we have already argued in Sec. &2zllidity can also be checked by
consulting Thm. 15. Finally, Laws (3b) and (4b) follow fromaws (6) and (7b).

For the temporal-logic fragment we have the laws in TablelZesE are standard except for
Laws (13)—(15) which involve the atomic propositiarga) anddis(a). The notation fA] has to
be understood as the conjunction ov@rfith a € A, i.e., we assume here that the alphafiet
is finite; of course, one can also generaligktp [A] for arbitrary setsA of actions. All laws
in Table 2 can be proved by appealing to the satisfactiortioaldcf. Def. 7) and entailment
(cf. Cor. 17). This argument works only f andq in Table 2 are temporal formulas. But in
fact, the laws are also valid for general LLTSs. To see this,have to generalise our results
on compatibility and entailment. We first define an extendsifaction relation=" for general
LLTS p and such LLTSjthat have a logic operator at top-level, i.e.,

tt, /. en@), dis(a), p1 VvV p2. P1 A p2, [a]p’, Op, or ptW p2

as in Def. 7 but with= replaced byCgrs in the if-clauses. Then, Thm. 15 and hence Cor. 17
also hold for=’. This is because the proof of Thm. 15 works Fgr, too; it repeatedly appeals
to induction to conclude Cgrs ¢ from p E ¢ (or vice versa), and this can simply be omitted
when dealing with=". Now the laws in Table 2 can be proved by referringstcand employing
Cor. 17 forE’; in other words, temporal-logic arguments within the LLT&hework can directly
be lifted to our “process-algebraic” setting.

Next, we turn our attention to laws of the form|la g Crs r which mix process-algebraic
operators and temporal-logic operators in cpsq andr contain a logic operator. Such laws
supportmodular verificatioras is shown by the following result:

14



Theorem 18 (Modular verification). Letg;, ¢> and¢s be temporal-logic formulas and § A
a synchronisation set. The#; ||s ¢2 Crs @3 if and only if p|ls g E ¢3 for all LLTS processes
P E ¢1 and gf 4.

The appeal of this theorem is that one can checKls ¢2 Crs ¢3 without considering all
processep andg. In addition, we do not have to develop a separate tempogit-tounterpart
to process-algebraic parallel composition.

Proor. “==" If p £ ¢1 andq | ¢z thenp [ls g Ers ¢1 lls ¢2 Crs ¢3 by compatibility,
compositionality and assumption. Thys|s q E ¢3 by compatibility again.

“<"1 Choosep =gt ¢1 andq =gt ¢2. Then,p Crs ¢1 andq Crs ¢2; P E ¢1 andq F ¢ by
compatibility; p ||s g E ¢3 by assumption; and; ||s ¢» Crs ¢3 by compatibility again. O

To illustrate Thm. 18, we prove the following two simple imstes:

en@) lls en@ Crs €ena) (1)
dis(a) ls tt Crs disd) ifaesS )

For the proof of Instance (1), first note thet(a) ||s en(a) can stabilise only to soma ||s A’
with a € An A’ (cf. Fig. 2(c)). Procesena) can match this by stabilising to the process
p =at (ANA)U(AUA")\ S, since this set contains actianThe transitions oA ||s A’ are of the

b . . b
formA|s A — tt||lsttforbe SN An A’ and, without loss of generality ||s A’ — tt||s A’

for b € A\ S. These transitions can be matchec#byb—> tt sincett ||s tt Crs tt andtt ||s A Crs tt
by Law (7b) in Table 1, as desired. The proof of Instance (2naslogous, except that¢ A and
hencea ¢ (AN A’) U (AU A’)\ S by assumption.

P
o

Figure 4: Example LLTS.

As an aside, we observe that laws ligern (Q |la ) =rs (P A Q) lla (p A r) do not hold.
Considerq =¢4; r =¢; tt and p as in Fig. 4, for whichp A (tt ||# tt) =rs p A tt =rs p cannot
deadlock after actioawhile (p Att) ||z (PAtY) =rs P |l# p can.

3.4. Duality

We conclude this section by briefly discussing negationc&our setting of LLTS is not ex-
pressive enough to encode liveness properties, such awthelé-[¢, we do not have negation.
Furthermore, Thm. 15 implies for the stable procgéisatf = tt andff E ff. Hence, we cannot
define ‘p | —tt if not p [ tt” for inconsistentp, since-tt should be equivalent tg. However,
for consistenprocesses and propositional formulas, we can expressioegabur—-less logic.

To show this, we define for consisteptand propositiona$: p E —¢ if ¥po. p=€>| pp =
notpg E ¢; as well as for formulag andy: ¢ 9= v if YpegF. pE ¢ < pE . Now, the
proof of the following proposition is an easy exercise.
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Proposition 19 (Dualities).
Sttt J f -en@ HE disa)  —(@Ay) HF -d vy
~f 9 tt  -dis@ HF en@ (¢Vvy) HF oAy

As a consequence, we can specify implications for congigt@tesses, e.gen@ — dis(b)
can be expressed dis(a) v dis(b). Finally, note that one cannot replage by =gsin Prop. 19
since=gs also relates inconsistent processes.

4. Example

We illustrate the utility of our setting involving mixtured process-algebraic operators and
temporal-logic operators via a small example. Considespezification of a very simple net-
working component. Sendé& (cf. Fig. 5) receives messages from a user process orspndt
and passes them on, via pa#, to channelC. The specification o€ employs an &-the-shelf
designP (cf. Fig. 5), a generic channel that may lose messages;awialiy, the behaviour oP
is restricted by a constraigit =gt [[in][in](en(out) A dis(in)). Intuitively, ¢ ensures that at
most one message may be lost in a row.

S: P: out y
Y /_\. sen senc
Q \._m».% T out
send w T out

Figure 5: Some LLTSs that occur in the example.

As an aside and assuming the availability of the standardgsealgebraic prefix operator,
¥ could equivalently be specified 8§ in][ in]out.tt, whereout.tt denotes the LLTS consisting
of an out-transition from an initial state to proceis Here, prefixing is employed as a com-
pact notation for specifying that only a single action i®watd, which is especially useful (or
even necessary) if the underlying alphabet is large (oritejin This demonstrates one of the
advantages of mixing operators from process algebras amgbtal logics.

The overall specification of our example is n8wec =4t (P A ¥) lljin; S)/in, where/in
is ahiding operatoron actionin, similar to the identically named operator in CSP [13], whic
restricts the scope afn to Spec (cf. [2] for details). Spec is a truly mixed specification that
conjunctively composes an operational component with gteal-logic formula, and puts the
result in parallel with another operational component ekifnchronising on the internal chan-
nelin. The LLTS semantics dfpec is successively developed in Fig. 6: (a) depicts the LLTS of
[in][in]out.tt; (b) depicts the LLTS ofy when reduced with respect tg;s (recall that there is a
standard finite-state definition of théoperator); (c) depicts the LLTS & =4 P A ¢ as well as
a simplified,=rs-equivalent version; and (d) depicts the simplified LLTS {img inconsistent
states) oBpec, where label {n) stands for a that results from hiding actioin [2].

Assume that the designer wishes to verify tBaec does not deadlock, i.e., alwagend
or out is enabledi¢ =4 (en(send) vV enout)). To demonstrat8pec = ¢, it is by Thm. 15
suficient to proveSpec Cgrs ¢. This is easy when considering the LLTSsSpkec andg, which
are depicted in Figs. 6(d) and 5. We also know that, wheneeeinyplement the channel de-
signC = P A ¢ by someC; so thatC; Crs C, the implementatiorimpl =4t (Ci |ljin) S)/in
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Figure 6: (a)—(d): Developing the LLTS 8bec; (e): Possible implementatidds of C.

satisfiesp, too. This is becausempl Crs Spec by compositionality and Prop. 5(2); thus, by
transitivity, Impl Crs ¢. Hence Impl E ¢ by Thm. 15.

Possible implementatior@ of C include the LTSC; that engages in atm-out-loop,C; that
behaves as amm-in-out-loop, orCs depicted in Fig. 6(e); the latter requires that at most one of
each two messages and at most two of five messages are lober R&tn provindCs Crs C,
one could establisE; Crs P andCz Crs ¢ separately, and then inf€z Crs P A ¢ = C by
Prop. 5(2).

5. Modal Logic LTS

If one wishes to write an LLTS specification that permits géanumber of ready sets initially,
one needs to insert@abranch for each single one of these ready sets. This candoe sg., in
Fig. 2 and leads to a cluttered and sometiméadilt to comprehend presentation of the desired
specification. A more compact representation can, howbeachieved by employingay and
musttransitions, as inspired by tmeodal transition systemsf Larsen [7].

In this section, we first introdua@odal LLTS as a shorthand notation for LLTS, and apply
them to the embedding of temporal logic into our setting anoltr example above (cf. Sec. 5.1).
This paves the way for comparing our setting to the one ofdmarfor which we adapt ready
simulation to modal LLTS and show that the resultingdal ready simulatiofs finer than ready
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simulation but coarser than Larsem®dal refinemeni7] (cf. Sec. 5.2). We also provide some
intuitive insights behindnay and mustin our setting (cf. Sec. 5.3), and discuss conjunction
operators in modal transition systems in the light of ourka(@f. Sec. 5.4).

5.1. Definition, Expansio& Application

In modal LLTS we distinguish required transitiopsL p’, calledmust-transitionsand
allowed transitiongp N p’, calledmay-transitions We demandsyntactic consistency.e.,
every required transition must also be allowed. In the foity, we writep,?a for Ap’. p -2 p.
Analogously,p—7—> if Ap’. p SN p’; note that the absence of some must—transip'eﬁe p’ does
not preclude the existence of the may-transim'nn(fa p.

Definition 20 (Modal LLTS). Consider a quadrupléP, —, --», F) such that (i) P is a set of
states or processes, (i C --» C PxA,xP, i.e., every must-transition is also a may-transition,
(i) --» N (Px {1} x P) € —>, i.e., everyr-transition is a may-transitiomanda must-transition,
and (iv) FC P.

We definegfmay(p) =qf {@ € A.|p -5} for modal LLTS and, analogously, wrinustp)

for{a € A | p S obviously,Jmustp) € Imay(p). In addition, we defineéj as before but
based on the may-transition relatiorn».

Then, the above quadrup{, —, --», F) isamodal LLTS if it satisfies the following three
conditions:

(r-purity) VYpeP.p— = VYae A p Lo

(mLTSL) peFif dacImayp). (p N andvp e P p N pP=p eF)or
(p /> and3p’ € F. p-%» p);

(MLTS2) p cannot stabilise (i.ep’ € P. p=4p) = peF.

In drawings of examples later on, we let an ordinary arrowesent a may-transitioand a
must-transition; may-transitions that are not also meastditions are drawn as dashed arrows.
Analogous to [7], syntactic consistency is formalised bguieng — < --+. The details of
Cond. (mLTS1) are justified by the following expansion of rabdLTS to LLTS (cf. Def. 21
and Remark 24), which explains modal LLTS as a shorthandioatéor LLTS. Further insights
regarding the intuition ofnayandmustin modal LLTS will be dfered in Sec. 5.3.

The idea behind the expansion of modal LLTS to LLTS is to replaach procesp by
a disjunction, where each disjunct captures all must-itians and some may-transitions pf
such that each collection of may-transitions that are reat alust-transitions is represented. This
clearly reflects the intuition ahay andmusttransitions.

Definition 21 (Expansion). Let P be a modal LLTS and, for ¢ P, let MO(p) denote the set
{p N plp N p’} of all may-onlytransitions of p, i.e., all outgoing may-transitions of @th
are not also must-transitions. Note Ek(qlt—(fa p’) € MO(p) impliesa # by (iii) in Def. 20.

To construct the expansion LLTSof P, we (i) add to P processes of the fofm M), for
each pe P and M c MO(p), (ii) defineF =4 F U {(p, M) € P|p € F}, and (iii) replace the
outgoing transitions of each process (P by the following new transitions:

e p—5(p,M) forMc MO(p),and
e (pbMSp for(p-2>p)eMorp—>p.
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Before presenting an example of such an expansion, we brigftyark on an alternative
definition where we replace a procggzss P and its outgoing transitions only MO(p) # 0
and, hence/may(p) # 0. The resulting expansion isgs-equivalent to the one obtained by
applying Def. 21. The advantage of this alternative debnitis a practical one, namely that
the resulting expansion is smaller. Indeed, the expansiBritself if may- and must-transitions
coincide, i.e., LLTSs are preserved. In contrast, everggsep where all outgoing transitions are
must-transitions, is split int@ SN (p, 0) in our definition. The disadvantage of the alternative
definition concerns proofs requiring the expansion coesin. This is because there would be
two cases to consider for each procgss P, which can lead to many subcases in proofs in
which one has to compare several may-transitions. Foreaisan we prefer Def. 21.

) /p\r (o) /(pz;) \ () /er

2 3 4 @d @) @{r2) @2  «dh @ @{1) @{12) @) 4

—

(ERb)

Figure 7: Expansion example: (a) Modal LLPS(b) Expansion LLTSP; (c) Alternative expansion LLTS.

We now turn to an example of our expansion construction. @enshe modal LLTSP in
Fig. 7(a). Its expansioR is depicted in Fig. 7(b), where we represent, in the stajglsl), the

elementgy ] andq LN 2 of MO(q) by 1 and 2. For completeness, the result of applying our
alternative expansion is depicted in Fig. 7(c). This exa#iso shows that it is convenient that
all r-transitions are must-transitions: if the initial part®fvere as shown in Fig. 8(a), then this
would be translated to Fig. 8(b) which just representsr as well, but in a more complex way.

P (b) p
/o a
3
q

(@)

r

T T

q

Figure 8: lllustration that demonstrates the convenieri¢beofact that all-transitions are must-transitions.
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In addition, observe that, with our interpretation of artétde state as a disjunction, it is suf-
ficient to implement one of its outgoing(must-)transitions. Thus, these transitions correspond
to onedisjunctive must-transitioas in [14]. Before proving that the expansion of a modal LLTS
is indeed an LLTS, we first state an easy lemma which will bel se@eral times in this section
and is proved in the appendix:

Lemma 22. Let P be a modal LLTS.
1. If p== p’ in P, then p==j (p’, M") in P wheneve(p’, M’) € P.
2. If p==j(p’, M") in P, then p=4 p’ in P.

The details of Def. 20, and in particular of Cond. (mLTS1)r¢he, are tuned to make the
expansiorP of P well-defined, i.e.Pis an LLTS without the need for any backward propagation.

Proposition 23 (Well-Definedness) Given a modal LLTS P, its expansibris an LLTS.

Proor. We check the requirements of Def. 1. Firstly, plle P are instable inP; all pro-
cessesf, M) are stable ifp is stable, and they only havetransitions ifp is instable.

Regarding Cond. (LTS1) ang € P, we have thapisin F ¢ F or all (p, M) ¢ F. For
processes of the fornp(M) we assuméla € 7((p, M))¥Yp'. (p, M) N p = peF (e,
p’ € F) and distinguish the following cases:

p +>: Then,A(p -%» p’) € M by a € T((p, M)), and we havef, M) — p’. Hence,p’ € F
by assumption. Thus, the second disjunct of Cond. (MLTSIgsHor «, i.e., p € F and
(p, M) € F.

p—5 p’: Here we have/p’.p - p = (p,M) — p’ by construction of, andp’ € F
by assumption. Thus, the first disjunct of Cond. (mLTS1) bdtt @, whencep € F and
(p, M) € F.

We now turn our attention to establishing Cond. (LTS2) of .Oef If p ¢ F thenp ¢ F
hence p can stabilise irP. Therefore p can also stabilise i by Lemma 22(1). If p, M) ¢ F,
i.e.,,p¢F,then: (a)pand (p, M) are stable and we are done; or (b)s not stable (i.eq = 7),

M = 0 (since allr-transitions are must-transitions), apd; (p, 0). Due top ¢ F, we obtain in
Case (b) thap can stabilise with somp_;# p’. Now, by Lemma 22(1)p_;>| (p',0) in P; this
involvesp — (p, 0), i.e., (0, 0) = (', 0). O

Remark 24. For the interested reader, we now explain the details of CémiLTS1) in Def. 20.
First consider Fig. 9(a) and part of its expansion in Fig. B(&nd contemplate the following sim-

ple adaptation of Cond. (LTS1): pF ifVp'.p —f—la PP = p €F.Then, p¢ F is justified by

the may-transition, but the disjun@, {}) of p in P must be ir-. This is a backward propagation
in the construction oP, which we want to avoid. The problem arises dugad}) which repre-
sents all must-transitions; therefore we requires = if da € Jmay(p). p =5 A vp'.p N p’
= p’ € F (cf. the first disjunct in Cond. (mLTS1)). Thusyi€ fmus{p) and p¢ F, then there
is some p¢ F with p SN p’, and all disjuncts of p if® also have ar-transition to p.

For the remaining case € Imay(p) \ Zmus{p), consider Fig. 9(c) and part of its expansion
in Fig. 9(d). In this case, we have the same problem with tlverse disjunct, i.e., just one
a-may-transition to a process in F should forceepF. This justifies the second disjunct in
Cond. (mLTS1).
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Figure 9: lllustrating the motivation behind Cond. (mLTS1)
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Figure 10: (a)—(d) Embedding of temporal-logic formula®imodal LLTS; (e) Compact representation of Fig. 6(b).

As an application of modal LLTS we show in Fig. 10 how the LLT8sthe formulastt,
en(a), dis(a), and g]¢ (cf. Fig. 2) can be represented more compactly as modal LLWwSere
‘Act’ stands forA. Compared to Fig. 2 we can do without theéransitions selecting the ready
sets; note that there are exponentially many such transifior finite A. In addition and as a
concrete example, we give a compact representation of hyir6Fig. 10(e). This modal LLTS
requires only 3 instead of 11 processes and only 5 instead tfatbsitions, and shows much
more clearly that any implementation of this specificatiamstrexhibit anout action after two
in actions.

5.2. Ready Simulatiof+ Modalities

Having defined modal LLTS as a shorthand notation for LLT®duld be interesting to de-
fine ready simulation directly on modal LLTS. In this sectiw@ present a very natural candidate
for such a variation. Surprisingly, thimodal ready simulatioturns out to be more strict than
ready simulation which, however, still gives us a sound meétfor checking on modal LLTSs
whether ready simulation holds for the LLTSs they stand for.

Another interesting question, given that we employ may-randt-transitions as a shorthand
notation, is how our approach is related to the original esfient preorder, known asodal
refinement of modal transition systems [7]. To answer this questioa,employ the modal
ready simulation just mentioned and show that modal refimtmelies modal ready simulation
and thus ready simulation. For this comparison only, we retlitrict ourselves to modal LLTS
without T actions, sincer has a special interpretation (related to disjunction) in approach;
hence, we identify modal transition systems witfree modal LLTS for whichF = 0. It is not
surprising that the reverse implication, i.e., ready satiah implies modal refinement, does not
hold since modal refinement is bisimulation-based. "

We first introduce our notion ofnodal ready simulation Recall that—j is based on
may-transitions, and note thate:)l could equivalently be based on must-transitions since all
T-transitions are mayand must-transitions.
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Definition 25 (Modal Ready Simulation). Let (P, —p, --+p, Fp) and(Q, —q, --+q, Fo) be
two modal LLTSs. RelatioR € P x Q is amodal stable ready simulation relatioor modal
stable rs-relatioffor short, if the following conditions hold, for afp, q) € R and a€ A:
(mRSY) p, g stable (MRS3) p=a>| p= 3q. q=a>| g and({p’,q)eR

(MRS2)p¢ Fp = q¢ Fo (MRSA) p¢ Fp = Imay(p) < Imay(q) A Imusfg) € mustp)

We write Pz, s if there exists a modal stable rs-relatigh such that(p,q) € R. Further,

p is modal ready simulatedy q, in symbols Emrsq, if Vp'. p=€>| pP = dJ. q=E>|q’ and
P EmRSq/'

Modal ready simulation has textually the same definitionesgly simulation (cf. Def. 4), ex-
cept for Cond. (RS4). Conds. (mMRS1) and (mRS2) do not dedl tnansitions and thus stay
unchanged. For Conds. (MRS3) and (mMRS4), consider a mod& Pland somep € P. Each

stepp=a>| p’ (based on may-transitions) is a possible behavioyy, o it must be matched as
for LLTS. Regarding Cond. (mMRS4),represents all ready sets betwdemus{p) andZmay(p),
whence each of them must lie betweBnus{qg) and/may(q) for a matchingy. Observe that the
inclusionZmay(p) € Zmay(q) already follows from Cond. (MRS3), as in Def. 4.

While Conds. (mMRS1)-(mRS4) are the naturally expected,dhissnot clear that they — by
themselves — treat the subtleties of may- and must-transitn sificient detail. Prop. 27 below
shows, however, that this is indeed the case.

Remark 26. The above definition of modal ready simulation somewhatrdsniis of De Alfaro
and Henzinger'salternating simulatiorfor interface automatfl5]. Alternating simulation is
also a simulation, with additional requirements for initiactions. Their setting is, however,
quite djferent from ours as it relies on an explicit distinction of ini@and output actions. Still,
one merit of modal ready simulation is that it makes the vaguneeptual similarity between our
approach and interface automata more precise.

The additional requirements of alternating simulation énat an implementation p allows
all inputs of a matching g (corresponding fmus{qg) € mus{p)), while it may only perform
outputs allowed by g (corresponding Imay(p) € Zmay(q)). Of course, an important techni-
cal difference is that inputs and outputs are disjoint in the setthgterface automata, while
JImustr) € Imay(r) for all processes r in our setting.

Another version of alternating refinement [16] (where siatigdn works one way for inputs
and the other way for outputs) is very close to the so-cathedial refinemen(7] (see Def. 29);
this relation has been worked outin [17].

We now prove that modal ready simulation on modal LLTS is fthan ready simulation on
their LLTS expansions:

Proposition 27 (Expansion Preserves Refinement)Let P and Q be modal LLTSs, andepP
and ge Q. Then, fCmrsq wrt. Pand Q= pLCrsqwrt. P andQ.

Proor. We first show the following statement. L&tC P x Q be a modal stable rs-relation, and
defineR € P x Q to consist of all pairg(p, M), (q, N)) where

e (p,q) € RandM C MO(p);
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e N is the set of all transitions N g in MO(q) such that there exigt’, p”,q” with
M (p - p) e Morp = p, (i) p -5 p=4p", (i) 4 - g =", and
(iv) (p”.q") e R.

The latter item ensures that, (N) allows exactly the steps matching sonpei1) =a>| . Now, we
claim thatR is a stable rs-relation. For the proof, we consider somérarki(p, M), (g, N)) € R
anda € A, and check the conditions stated in Def. 4:

(RS1) (p,q) € R implies, by Cond. (mRS1), that andq are stable. Hence, processesNl)
and @, N) are stable.

(RS2) (p, M) ¢ F implies, by the construction @, thatp ¢ F. Thus,q ¢ F by Cond. (mRS2)
and, hence, N) ¢ F.

(RS3) Let (p, M) :aai(p”, M”); hence, there is som@& with (p N p’) e Morp 2, p’, and
(p, M) SN p’=E>|(p”,M”). Therefore,p B p’=E>|p” in P (cf. Lemma 22(2)). By
Cond. (mRS3), there exist, q” with q N q =E>|q” and(p”,q”’) € R. Thus, € -2

q) e Norg 2 g by the definition ofR. Moreover, €, N) 2, ' by the construction
of Q. Since(p”,q”) € R, there is a uniqudl” with ((p”, M”), (9", N”)) € R, and we have

q =E>} (9, N”) in P by Lemma 22(1). Together witfg(N) = d’, this finishes this case.

(RS4) Let (p, M) ¢ F. The inclusionZ((p, M)) c 7((g, N)) is clear from Cond. (RS3) above.
Now leta € 7((qg, N)), i.e., there exists g such that ¢ Ha g) e Norq 2 q. Inthe
case ( 2, d) € N, we have some’ with (p N p’) e Morp N p’ by the definition
of R, and thus p, M) 2, p’in P. In the casey 2 d', we havea € Imus{q) < Zmus(p)
by Cond. (mRS4), andmus{p) € Z((p, M)) by the definition ofP.

We now prove the statement of the proposition and assumggrs 9. Let p=e>} (P, M) in P,

ie., p_;>| p’ in P by Lemma 22(2). Then, there existsgawith q:eiq’ and p/ s due

to some modal stalgle rs-relatigh ConsiderR as gonstructed gbove and thg such that
{(p’', M), (0, N)) € R. Sinceg=q in Q we getq= (¢, N’) in Q by Lemma 22(1), which
finishes the proof. O

b :

P
{
N\

Q
q
/ a
T
[9
T
Figure 11: Counterexample: The inverse implication reiggrérop. 27 does not hold.
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In the following, we also writgp Crs g for processep andq in modal LLTSsP andQ, respec-
tively, if p Crs q wrt. P and Q As an aside, also note that,rs andCrs coincide for those
modal LLTS for which each may-transition is also a must-4ron, i.e., for ordinary LLTS.

The reverse implication regarding Prop. 27 does, howeethald as is testified by the coun-

terexample depicted in Fig. 11. Observe thaRiandQ, the steps=a>| choose between the two
branches. This is not the caseRn Technically, when trying to provp Cyhrs g in P andQ, one
must matchp’ with g’ or g”. Neither of these matches is possible sineeZmay(p’) \ Zmayq’)
andc € Imustq”’) \ Zmus{p’). In order to give a characterisation for ready simulationtive
level of modal LLTS, it seems one would have to relptevith the set{q’, g”’}. Since this sug-
gests that a characterisation will necessarily be compglitand less appealing for applications,
we do not investigate this issue further here.

Lately, some researchers have shown interedeterministicnodal transition systems (see,
e.g., [18]). Intuitively, determinism of a modal transitigystem means determinism of its may-
transition relation, and thus also of its must-transitielation. Adapting this notion to modal
LLTS, we say thatP is deterministic if it is deterministic with respect to thartsition rela-

tion = p. This means that eacha=>| p Step from some procegs e P leads to the same pro-

cessqg € P, so we can assume that there is a direct trans'piolga g. In particular,P has no
7-transitions, and alp € P are stable. While the reverse implication regarding Pr@piszhot
valid in general as seen above, we now prove that it holdsdtarchinistic modal LLTS.

Proposition 28 (Reverse of Prop. 27)Let R Q bedeterministicmodal LLTSs, and g P and
g€ Q. Then, IErsqwrt. PandQ — pLCnrsqwrt. P and Q.

Proor. In the sequel we writd (M), whereM < MO(p) andp € P, for the action sefa €

AP’ (p N p’) € M}. We also employ the notatiaf(N) analogously foN ¢ MO(qg) and
g € Q. Given deterministic modal LLTSR Q we first show that

R =at ((P.6) € Px Q| IN € MO(G). Z(MO(p)) € Z(N) and (. MO(P)) & s (6 N)}

is a modal stable rs-relation. To this end, consider seme) € R, i.e., I7((p, MO(p))) <
I((g, N)) for a suitableN € MO(q), anda € A. We check the conditions of Def. 25:

(mRS1) SinceP, Q are deterministic, we have thptandq are stable.

(MRS2) p ¢ F implies (p, MO(p)) ¢ F, by the construction oP. Thus, @, N) ¢ F by
Cond. (RS2) and, hence ¢ F.

(mRS3) Let p=a>| p’ for somep’, i.e., p N p’ sinceP is deterministic. By expansion, we
have both p,MO(p)) — p — (p’,MO(p)) and (,MO(p)) — P — (P, 0),
whence 0, MO(p)):a{(p’, MO(p’)) and (o, MO(p))=a>|(p',0) sincep’ ¢ F. Exploiting
Cond. (RS3), there exigt, N’ andg”, N” such that@, N) = (f, N'), (q, N) =4 (", N""),
(P, MO(p)) B (0, N') and (', 0) 5. (a”,N”). By expansion againg -2 g and

a . a . . e . .
g --» q”, which meang = q” andq=—J  sinceQ is deterministic. It remains for us to
establish7 (MO(p’)) ¢ Z(N’) to be able to concludgy,q’) € R, as desired. Exploiting
Cond. (RS4) and considerim ¢ F, we haveImus{p’) U Z(MO(p)) = Z((p’, MO(p))) =
I((d,N)) = Imustq) U I(N’), as well asimustp’) = 7((p’,0)) = I((d,N")) =
Imus{q)UI(N”). Hence /mus{p’) 2 Imus{q’) and, becausémus{p’)NZ(MO(p’)) = 0
andZmustq’) N 7(N’) = 0 by the definition of may-only transitiong(MO(p’)) € 7(N’).
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(mRS4) p ¢ F implies (p, MO(p)) ¢ F, which in turn impliesZ ((p, MO(p))) = Z((q, N)) by
Cond. (RS4). To showimay(p) € Jmayq) we leta € Imay(p), i.e.,a € Z((p, MO(p)))
by expansion. Hence € 7((g, N)), which impliesa € Imayq). For establishing the
inclusion Imusfq) < Imustp), leta € fmus{q) so thata € 7((g, N)) by expansion.
Thereforea ¢ 7(N) anda € I((p, MO(p))). SinceZ (MO(p)) € Z(N) and thusaa ¢ MO(p),
this proves the existence of anmust-transition op, i.e.,a € Jmustp).

Using this result we can now establipityrs d. Sincep, g are stable by assumption, it isfBu
cient to prove(p, gy € R. To do so, considep — (p, MO(p)) andp — (p, 0) in the expansion

of P. Thus, by Cond. (RS3) and expansian:— (q.N), g — (a,N'), (p.MO(p)) S (. N)
and (p,0)C S(q, N’), for someN, N’ € MO(q). By reasoning analogously as in (MRS3) above,
we obtainI?MO(p)) C I(N), which finishes the proof. O

We end this section (Sec. 5.2) by proving that modal refingingplies modal ready simulation
and thus, by Prop. 27, it also implies ready simulation. k@ tesult we only consider modal
transition systems without, as announced above. Thus, a standard modal transiticensyst
the sense of Larsen [7] corresponds in our settingitdrae modal LLTS withF = 0.

Definition 29 (Modal Refinement [7]). A modal refinement relatioR C P x Q satisfies for all
(p,q) € Rand ac A:

1.p il p’ impliesdq'. q -2 g and({p’,q) € R;

2. q =2 q implies3p’. p =2, p’and({p’,q) € R.
We write p<i qif (p, ) € R for a modal refinement relatioR, and call<;. modal refinement
Itis easy to see that such a relatiRiis also a modal stable rs-relation: Cond. (mMRS1) and Cond.
(mRS2) hold trivially; Cond. (mRS3) reduces to Cond. (1)\ahdor Cond. (mRS4) we recall

that/may(p) € Imay(q) by Cond. (mRS3), andmust{qg) € Zmus{p) by Cond. (2) above. Hence,
we have the following proposition:

Proposition 30 (Modal Refinement Refines (Modal) Ready Simation). p <. q implies
p Cmrsd and, hence, g q also implies trsq.
q
% a
[ ]

:

-9 5

Figure 12: Counterexample: Ready simulation and modalresdulation do not refine modal refinement.

It is not surprising that the reverse implication regardimg proposition fails in general, since
modal refinement is of bisimulation-type. A counterexamgldepicted in Fig. 12, for which
P Cmrs g and p Crs g hold, but notp <, q. However, the reverse implication is true for
deterministiomodal LLTS, as is not diicult to check.
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Figure 13: Example illustrating action-modality.

5.3. Mayé& Must in Modal LLTS, Intuitively

We have set up modal LLTS in such a way that we can treat gemeddl transition systems
as we have done above. However, this generality allows ugite down some modal LLTS
whose meaning regardimgayandmustis not quite intuitive. The situation arises when a process
possesses severadtransitions for some action, at least one of which is a must-transition.
Then, anya-may-transition of the process hasmustcharacter, as is illustrated by the example
processe®, g andr in Fig. 13: somewhat surprisingly, modal rs-refineg since it modal
rs-refineqy. Indeed, the specificatiogmis more clearly expressed loy

As suggested by this example, it iglcient to focus our attention on a subset of modal LLTS
wheremayandmustdo not depend on single transitions but only on each procesagtion. In
other words, we can restrict ourselves to what we aetiion-modalL LTS:

Definition 31 (Action-Modal LLTS). A modal LLTS P is aaction-modal LLTSif, for all pro-
cesses o’ € P and ae Jmus{p), we have pEf» p’ implies p—a> p.

To the best of our knowledge, the subclass of action-modaf within modal transition systems
(i.e., 7-free LLTS with F = 0) has not been considered in the literature before. Theviaiig
theorem, whose proof again relies on our notion of modalyeatdulation, shows that the re-
striction imposed by action-modal LLTS does nffeat our setting’s expressiveness:

Theorem 32 (Generality of Action-Modal LLTS). For each modal LLTS P, there exists an
action-modal LLTSP and a bijection- : P — P such that, for all pe P, p =mrs P and,

thus, p=rsP wrt. P andP.

Proor. Given a modal LLTSP, we construct the action-modal LLTRSas follows:
. P =a {PIPeP}
P— P |p-2» p anda € Imustp)} (containing—sp);

{
o —p5 =dr |
o -5 =a {(P-—PIp-— P
o F =4« {PlpeF}.

Let R =g ((p.P)Ip € Pis stablg. We show thatR and its inverseR™! are modal stable rs-
relations:

(mRS1) & (MRS2) Both these conditions are straightforward to establish.

(mMRS3) Since --+5 and --+p — as well askF andF — are essentially the same, we have

p== p’ if and only if = for all p, p’ € P.
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(mRS4) Analogously,/may(p) = Jmayp) for all p € P. Furthermorep Lﬁ only if a €
Imustp), i.e., Imustp) € Imusfp). Converselyp € Imustp) implies3dp’. p e P;
hencep i’ﬁ P, i.e.,a € Imustp).

Now the result follows sinc® andP are isomorphic on may-transitions and, in particular, on
T-may-transitions. O

5.4. Conjunction in Modal Transition Systems

A conjunction operator (and also a disjunction operatog) been defined for modal tran-
sition systems by Larsen in [7]. To be able to accommodat§uoation, Larsen generalised
modal transition systems to deal with syntactic inconaisgewhereby must-transitions do not
necessarily also have to be may-transitions. He then defiosjdinction such that it gives the
greatest lower bound with respect4p (with the same definition as above, see Def. 29), thus
satisfying one of our benchmark results (cf. Prop. 5(2))c@frse, this works for the strictey
which is not justified by a full-abstractness resultags is [2] (cf. Thm. 6).

P Q PAQ

p q prq
a’\/>a a’\/>a a \a
\ \ ;

1 3 1 N3 K
b b

Y Y

2 2

Figure 14: Example demonstrating théidulty of understanding Larsen’s conjunction operatignall

It must be mentioned that, although has a very elegant definition, the result of Larsen’s
conjunction can be dicult to understand operationally since inconsistencjesré not directly
related to unsatisfiability and (ii) are not “first-classiz#ins” as in our setting. To illustrate
this we consider the example in Fig. 14, where ordinary agpsasent must-transitions without
representing a may-transition. Heceg, p due to the modal refinement relatiff, p), (3, 1)},
so we must havg < p A g. For obtaining this result, the must-transitiongof g are matched
byq 4 3, while the may-transitiog -2, 3is matched by the separgie q N 1A3,whichis
surprising. Thus, although A g “is syntactically inconsistent”, it is refined by the consistg.

In line with the modal refinement developed in [18]is even an implementation since»
and— coincide. Furthermore, it is not very intuitive from the ghical presentation gb A q
thatq <. p A qwhile p < p A gfails. Finally, one cannot remove states or arcs to nyakeq
consistent without changing its meaning: we would have teawe both must-transitions, but
thenp A g <. g— which follows froma being a lower bound — would fail since there would
be no match foqg 43 any more.

This shortcoming has been avoided by Larsen et al. in [20]@nRaclet in [21]. Larsen
et al. have limited conjunctive composition to so-caliedependenspecifications which avoid
inconsistencies, while Raclet has restricted his settrtgterministiomodal transition systems.
Raclet, but not Larsen et al., covers the example above,enherqg yields the desired resud
When expanding A qto LLTS, the resulting LLTS is also exactly the expansiom.of
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6. Related Work

Related work has often avoided mixing operational and letites of specification by trans-
lating one style into the other, although the use of combstglts has also been described by
others, e.g., [22]. Logic content may be translated intaaip@nal content, such as in Kurshan'’s
work onw-automatg23] which includes synchronous and asynchronous conipogiperators
and employs trace inclusion for refinement. However, tractusion is insensitive to deadlock
and is thus inadequate in the presence of concurrency. Rexssarch ofinterface theoriedy
Raclet et al. [24] mixes conjunction and synchronous praduttich also considers some version
of ready semantics in [21]. In contrast to our work, howetsgjr line of research utilisede-
terministicmodal transition systems, is also not sensitive to deadkut does not substantiate
refinement via a full-abstraction result.

Dually, operational content may be translated into logitrfolas, as is implicitly done by
Lamport in [25] where logic implication serves as refinenretdation [26]. A similar approach
is followed in Hoare and He’s UTP [27], thénifying Theories of Programmingvhere a trans-
lation of the process algebra CSP [13] into logic formulasdscated. Thus, conjunctionis, e.g.,
applicable to processesanda + b (i.e., thep andr in Fig. 1(a)), which yields a process that
can neither refusk in the sense of failure semantics, nor can it perforrilencea A (a+ b) is
an inconsistent process, but it is not treated as logicalBefas in our work. It seems that this
inconsistency can be repaired in [27] by adding furthercb®{e.qg., as il (a+b))+b = a+b),
which we regard as undesirable.

A seminal step towards a mixed setting was taken by Olderf&Binwhere process-algebraic
constructs are combined witrace formulasand where failure semantics underlies refinement.
In this approach, trace formulas can serve as processatwite versa. Thus, and in contrast
to our present work, [28] does not support the unrestrictixihign of operational and logic speci-
fication styles, which can be very useful as, e.g., demaesttzy our example in Sec. 4. In [29],
a mixing of process-algebraic and temporal-logic opesat®advocated by Guerra and Costa,
too: a simple process algebra is extended with an operagxpiess that eventually some action
occurs (see also [30]). Again, the semantics is based oesiad is thus not deadlock-sensitive.
However, the ideas of Guerra and Costa may help one to exterapproach to liveness proper-
ties, as may those in [31].

In the context of a proof methodology based on modal tramsiystems, the process alge-
bra CCS [32] has been extended by Larsen and others with meynast-modalities and with a
compositional conjunction operator [20]. While conjupctis — as mentioned above — only de-
fined onindependenprocesses, parallel composition and conjunction can bedmixore freely
than in [28]; in particular, conjunction is shown to distrib over parallel composition. Larsen
et al. also employ a typical pattern of modal transition eyt within their proof methodology
that corresponds to simphG formulas in the temporal logic CTL [33]; however, an algeébra
theory of mixing operational and (temporal-)logic operatis not considered in [20].

We also mention the work of Fecher and Grabe [34], where reamylation is used as im-
plementation relation and where a specific satisfactiortdorporal-logic formulas is defined
similar to our approach. In [34], whenever a process sadisfimrmula, each implementation of
the process satisfies the formula; however, [34] does nmwahe free mixing of operators. An-
other consideration of logics in process algebra which do@sever, not result in mixing logic
and process-algebraic operators, involgesditionsin if-then-else constructs; see, e.g., [35].
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7. Conclusions & Future Work

This article embedded a temporal logic for specifying safebperties into the ready-sim-
ulation-equipped setting of Logic Labelled Transition 8yss [2] (LLTS). The chosen logic was
a branching-time logic that allows one to specify propentegarding the enabledness of actions,
using standard temporal operators suchlasysandunless(weak unti), which were shown to
be compositional for ready simulation. The embedding isseovative in that ready simulation,
when restricted to pairs of processes and temporal formuatdacides with the logic’s satis-
faction relation. Moreover, ready simulation, when res#dl to formulas, is entailment. The
extended setting of LLTS is unique in the literature in tha¢mnds itself tofreely mixing opera-
tional and temporal-logic styles of specification, withdgaimulation facilitatinggompositional
refinement and model checking.

Regarding future work, we wish to re-phrase our setting éndlassic process-algebraic style
and to study axiomatisations of ready simulation. In additiLLTS should be extended so as
to be able to express liveness, too. This is, however, a naatttask as can be seen when
considering the eventuality operatprin temporal logics. We would defing E ¢ if, for all

maximalrunsp:eﬂ po% plij --- (whereg € A) either ending in some, with Ya € A..

Pn 45 or being infinite, there exists some procggwith px = ¢. Then, we would have to find
a suitable LLTS for extending the compatibility theoremnTH.5 above.

(b) D (©
T b b
. .—b>.—b> b e
TT b a
Wb a
[ ]
it

Figure 15: Examples demonstrating théidulty of dealing with liveness in our setting.

We illustrate the problem of such an extension by takifig= {a, b} and considering the
formula ¢en(a). This example is particularly simple since we only havedyeset{b} before
reachinga. In the spirit of LTL [33], we could understanflen(a) as a disjunction over alb-
sequences followed by am i.e., we would encodéen(a) as the LLTS depicted in Fig. 15(a).
But, for the proces® shown in Fig. 15(b), this encoding cannot ready simulatglthough
p E ¢en(a), i.e., compatibility would be violated. The reason is ttiet encoding must initially
choose a natural numblkesuch that actiom is enabled afteexactly kactionsh. To improve our
encoding, we could ade-transitions in such a way that the decision when acti@tcurs can
be postponed; see process Fig. 15(c). But, again, processn Fig. 15(d), withqg being the
process in Fig. 15(c), satisfi€en(a) while r IZrs q. Here,q must decide for a numbérsuch
that actiona is enabled afteat most kactionsb (and at least one actids), while r can postpone
this decision. Therefore, it seems that we must enrich odiSd with aBiichi-type acceptance
conditionto deal with liveness. However, it is not clear to us how todiarBiichi states in a
simulation setting satisfactorily, e.g., so that a fulkthction result (cf. Thm. 6) can be obtained.
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Appendix A. Additional Proofs

For the sake of completeness, this section contains thdpoddhe lemmas stated in the
main body of the article.

Appendix A.1. Proof of Lemma 14
Proor. We need to check Conds. (W1)—(W4)Gfwitness.

(W1) If g€ Wi, thenp ¢ Fop, which impliesp; ¢ Fp for alli. Henceg; ¢ Fq by pi <. di, for
alli. If g € Wy, theng =4, for all i, and thusy ¢ Fo.
(W2) If @ € W, stable, ther; andq; are stable for any, j and, by the aboveg;, q; ¢ Fo.

By pi SHs and p; Creli» We obtains (o) = Z(pi) = Z(p;) = Z(q;), where the second
equality holds due t@ ¢ Fop.

If § e W, stable, therf € W; and we are in the case above.

(W3) We first consider the case= . Then,d—T> impliesdi. g = G, for someg;. Moreover,
g can only be inW, and not inW; sinceW,; requiresq to be stable. Thus, w.l.o.gj; is

chosen such thaj _;>| . By definition ofW,, we haveq SN (O1,.--, G- - -, 0n) € Wo.
If @ # 7, thenq N meangj € W;. Moreoverg; -, for alli. Thus, due tgg ¢ Fop and
pi Sog G We haveYi. p -2, by Cond. (RS4). Thusj —, and hencélg. [3:“4([3’, p)

andVi. p; _i>| p. By Cond. (RS3), there exist andd; such thaty; e G =€>|qi' and
{ERSqi’. Moreover, we knowaRSq andp ¢ Fp, sothat(,...,q,,0) € Wi. Now,

d-5 G- .., 00, Q) € Wo.

(W4) If g € Wi, theng; is stable for alli, which implies thafj is stable, too. Thereforg,can
stabilise trivially inW.

If § € W,, thend can stabilise since every can stabilise by the definition &f,. This
stabilisation is ifW, by construction. O

Appendix A.2. Proof of Lemma 16

Proor. We first show the lemma fo@RS in place ofCrs, before concluding by establishing the

root condition. In order to provp S from pERSQfor all pe Pandq e OY, it is suficient
to establish that

R =df {<p7 ql> | Elnv QL ceey Qi—l, qi+17 DY Qn- pERSq}
is a stable rs-relation. We verify Conds. (RS1)-(RS4) of Bef

(RS1) Proces9 is stable, and allj are stable sincg is stable.

(RS2) If pg F,theng ¢ F sincepEqu’. Henceg ¢ F.

(RS3) Let p—4 p’. By PS.e0 there exists somg = (qy,....qp,,) such thatd = and
P’ C o - Thereforeg = ¢f and(p’, ¢f) € R.
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(RS4) Let p ¢ F. Then,ZI(p) = 7(q) due topERSq. By constructionJ(q) = I(q1) = ... =
I(qn) sinceq ¢ F by the above. Hencd,(p) = 7(q).

We can now complete the proof of the lemma by establishingabecondition. Letp=€>| p’ for
somep’. Hence, byp Crs g, there exists somg = (), ..., gp,) such tha'q=€>| q andp’ S .

This impliesq; _i# g and, by the abovey SHe O

Appendix A.3. Proof of Lemma 22

Proor. For proving Part (1), we have that eggh# p’ on the run underlyingp:ei p’ is instable
in P. Insertingp” — (p”,0) in each case (ang’ — (p’, M’)) we get a run irP, proving that
p== (p’, M’). Note thatp” ¢ F impliesp” ¢ F and (", 0) ¢ F, and similarly forp’ ¢ F.

For proving Part (2), observe that the run underlyp'nge:# (p’, M) consists of pairs of transi-
tionsp” — (p”,0) — p”” and the last step’ — (p’, M’). Replacing each pair by’ — p”’
and omitting the last step, we get a run prov'png€=>| p’ in P. Note that, for eaclp”, we have
p” ¢ F and thusp” ¢ F. O
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