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Abstract

Previous work has introduced the setting of Logic Labelled Transition Systems, called Logic
LTS or LLTS for short, together with a variant of ready simulation as fully-abstract refinement
preorder, which allows one to compose operational specifications using a CSP-style parallel
operator and the propositional connectives conjunction and disjunction.

In this article, we show how a temporal logic for specifying safety properties may be embed-
ded into LLTS so that (a) the temporal operators are compositional for ready simulation; (b) ready
simulation, when restricted to pairs of processes and formulas, coincides with the logic’s satis-
faction relation; (c) ready simulation, when restricted toformulas, is entailment.

The utility of this setting as a semantic foundation for mixed operational and temporal-logic
specification languages is demonstrated by means of a simpleexample. We also adopt the con-
cept of may- and must-transitions from modal transition systems for notational convenience,
and investigate the relation between modal refinement on modal transition systems and ready
simulation on LLTS.

Keywords: labelled transition systems, ready simulation, temporal logic, safety properties,
heterogeneous specification, modal refinement
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1. Introduction

Recently, the setting ofLogic Labelled Transition Systems, also referred to as Logic LTS or
LLTS for short, has been introduced [1, 2], which combines operational and logic styles of speci-
fication within a unified framework. It includes operational(i.e., process-algebraic) operators [3],
such as parallel composition and hiding, and the propositional-logic operators conjunction and
disjunction. LLTS extends labelled transition systems by an inconsistencypredicate on states,
where an inconsistent state, or process, denotes empty behaviour that cannot be implemented.
Inconsistencies may arise when conjunctively composing processes with differentready sets,
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i.e., initial action sets [1]. The refinement preorder⊑RS adapted for LLTS is a variant ofready
simulation[4, 5, 6]. It is fully abstract with respect to a reference preorder that relates consistent
implementations only to consistent specifications [2], i.e., it is the coarsest compositional pre-
order with respect to parallel composition and conjunctionwhen taking consistency into account.
Most notably, the setting justifies asimulation-typepreorder when starting from the binary ba-
sic observable ‘consistency’. The preorder⊑RS is also compositional regarding other operators,
namely prefixing, hiding, and external and internal choice,where internal choice coincides with
disjunction.

This article extends LLTS by temporal-logic operators, thereby fulfilling our ultimate goal
of combining process-algebraic and temporal-logic operators in a uniform compositional refine-
ment setting, in which logical satisfaction and process refinement can be used interchangeably.
The temporal logic of interest is a branching-time logic, allowing one to specify the most im-
portant class of temporal properties in practice, viz.safety properties, over atomic propositions
that refer to the enabledness of actions; in particular, we consider the standard temporal oper-
atorsalwaysandunless(weak until). These operators will be embedded into LLTS such that
the logic satisfaction relation|= is compatiblewith ⊑RS. This means that, firstly,p |= φ if and
only if p ⊑RS φ, for any processp and temporal-logic formulaφ; secondly, ready simulation is
compositionalfor the temporal operators. Moreover, when restricted to formulas,⊑RS coincides
with entailment. The resulting mixed setting satisfies standard process-algebraic, propositional-
logic and temporal-logic laws, as one would expect, plus newlaws that refer to both logic and
temporal operators. For employing our LLTS setting in practice, this article also shows how the
idea of may- and must-transitions in Larsen’smodal transition systems[7] may be adopted to
LLTS. This allows one to specify ranges of ready sets compactly, thus achieving representation
economy when specifying systems using LLTS; it also permitsthe formal investigation as to how
modal refinement[7] on modal transition systems and ready simulation on LLTSrelate.

Our LLTS setting is unique in the literature in that it allowsone tofreelymix operational op-
erators, propositional-logic operators and temporal-logic operators, while still permittingcom-
positional reasoning, as discussed in the related work section. Our work is strongly inspired
by current research into novel notations and methodologiesfor developing software, where re-
quirements and designs of behaviourally complex systems are regularly specified using a mixture
of declarative and operational languages, allowing for thetraceable transitioning from software
requirements to designs. At the requirements level, popular languages include restricted forms
of English or simple spreadsheets (declarative, also temporal) and block diagrams or state ma-
chines (operational). At design level, UML class diagrams combined with the Object Constraint
Language [8] (declarative, partly temporal) and Statecharts [9] (operational) are frequently
used [10]. The setting presented in this article serves as the semantic backbone for a related,
industry-supported research project (“Refinement Patterns for Contractual Statecharts”; EPSRC
grant EP/E034853/1) which extends Statecharts with temporal-logic-style contracts and employs
ready simulation⊑RS for compositional model checking. Indeed, our main theoremproving the
compatibility of |= with ⊑RS (Thm. 15) provides a formal basis for compositional verification.

Organisation. The remainder of this article is organised as follows. Sec. 2revisits the setting of
LLTS introduced in [1, 2], including: the notion of inconsistency; parallel, conjunction and dis-
junction operators on LLTS; ready simulation on LLTS; and full abstraction [2]. Sec. 3 presents
our integration of temporal-logic operators in LLTS and proves several key results, foremost
compositionality, compatibility, entailment and variouslaws. The utility of this extension for
developing reactive systems is then illustrated in Sec. 4 bymeans of a small example. Sec. 5
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adopts the concept of may- and must-transitions from modal transition systems as a convenient
shorthand notation for LLTS, formally relates modal refinement to our ready simulation, and
discusses conjunction in modal transition systems in the light of our work. Further related work
is discussed in Sec. 6, while Sec. 7 presents our conclusionsand directions for future work; in
particular, Sec. 7 highlights the challenges of extending our setting so as to be able to also ex-
press liveness. Finally, the proofs of some lemmas employedin Secs. 3 and 5 are contained in
the appendix, so as not to unnecessarily disrupt the flow of reading.

2. The Setting of Logic LTS

We begin with briefly recalling the setting of LLTS, togetherwith several results and nota-
tions that are relevant to this article.

2.1. Inconsistency

LLTS considersinconsistenciesthat may arise under conjunctive composition as first-class
observables. A conjunctively composed state between two processes is marked as inconsistent if
one offers an action that the other cannot perform, i.e., if the processes have differentready sets.
Consider the processesp, q andr in Fig. 1(a). Processp andq specify that exactly actiona and
resp.b is offered initially, i.e., their ready sets are{a} and resp.{b}. Similarly, r specifies thata
andb are offered initially and thus has ready set{a, b}. Hence,p∧ q andp∧ r areinconsistent
(or false), and should be tagged as such. Formally, our variant of LTS will be augmented by
an inconsistency predicate F, so thatp ∧ q ∈ F and p ∧ r ∈ F in our example. Observe also
that, e.g., according to failures semantics [11],p andq (resp.p andr) do not have a common
implementation.

(b)

a ba b a
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a ba
F

b
F

τ τa b
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(F)(c) (d) (e)

F
a a
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a
(F)

F

a

p’ q’p rp q(a)

Figure 1: (a)–(b): Conjunctive composition; (c)–(e): Backward propagation.

Most notably, inconsistencies may propagate backwards along transitions. For example, in
the conjunctionp′ ∧ q′ shown in Fig. 1(b), both conjuncts require actiona to be performed,
whencep′ ∧ q′ should have ana-transition. But this transition leads to an inconsistent state and,
in the absence of any alternativea-transition leading to a consistent state,p′ ∧ q′ must itself
be considered inconsistent. In this spirit, inconsistencypropagates backwards for the process in
Fig. 1(c), whereas it does not for the processes in Figs. 1(d)and 1(e). Note that, in Fig. 1(e),
actionsτ are used to specify a disjunction between alternatives; hence, our treatment ofF corre-
sponds to the law thatfalseis the neutral element with respect to disjunction.
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2.2. Formal Definitions

LetA be a non-empty alphabet of visible actions with representativesa andb. With τ being
a distinguished, internal action, letAτ denoteA ∪ {τ} with representativesα andβ. A labelled
transition system, or LTS, is a triple〈P,−→, F〉, whereP is the set ofprocesses(states),−→⊆

P×Aτ×P is thetransition relation, andF ⊆ P is theinconsistency predicate. We writep
α
−→ p′

instead of〈p, α, p′〉 ∈−→ andp
α
−→ instead of∃p′. p

α
−→ p′, and denote a transitionp

α
−→ p′

with p, p′ < F by p
α
−→F p′. Further, we letI(p) stand for theready set{α ∈ Aτ | p

α
−→} of p. A

processp that cannot engage in aτ-transition, i.e.,p 6
τ
−→, is calledstable.

We introduce weak transitions by writing (i)p
ǫ
=⇒ p′ if p

τ
−→

∗

p′; and (ii) p
a
=⇒ p′ if

∃p, p′. p
ǫ
=⇒ p

a
−→ p′

ǫ
=⇒ p′. If all processes along a computationp

ǫ
=⇒ p′ or p

a
=⇒ p′,

including p and p′, are consistent, we writep
ǫ
=⇒F p′ and resp.p

a
=⇒F p′; if in addition p′ is

stable, we writep
ǫ
=⇒| p′ and resp.p

a
=⇒| p′. We also introduce a notion to deal withdivergence,

i.e., infinite sequences ofτ-transitions, where divergence is viewed as catastrophic if a process

cannot stabilise; here, processp cannot stabiliseif ∄p′. p
ǫ
=⇒| p′.

Moreover, we require an LTS to satisfy the followingτ-purity condition: p
τ
−→ implies

∄a ∈ A. p
a
−→, for all p ∈ P. Hence, each process represents either an external or internal

(disjunctive) choice between its outgoing transitions. This restriction reflects the fact that ready
sets can only be observed at stable states, and is justified in[1]. LLTSs must satisfy two further
properties, of which the first one formalises our backward propagation of inconsistencies:

Definition 1 (Logic LTS [1]). An LTS〈P,−→, F〉 is a Logic LTS, or LLTS for short, if

(LTS1) p ∈ F if ∃α ∈ I(p)∀p′ ∈ P. p
α
−→ p′ =⇒ p′ ∈ F;

(LTS2) p cannot stabilise=⇒ p ∈ F.

2.3. Operators on Logic LTS

LLTSs are equipped with various propositional-logic and process-algebraic operators which
were introduced in [1, 2]. Theparallel operator‖A on LLTS, for a synchronisation alphabet
A ⊆ A, is essentially the one of CSP [11], but it favoursτ-transitions over visible transitions so
as to preserveτ-purity. Naturally,p ‖A q is inconsistent ifp or q is inconsistent. Formally:

Definition 2 (Parallel operator [2]). The parallel composition of the two LLTSs〈P,−→P, FP〉

and〈Q,−→Q, FQ〉 for the synchronisation alphabet A⊆ A is the LLTS〈P ‖A Q,−→P‖AQ, FP‖AQ〉:

• P ‖A Q =df {p ‖A q | p ∈ P, q ∈ Q}

• −→P‖AQ is determined by the following operational rules:

p
α
−→P p′, α < A, (α = τ or q 6

τ
−→Q) =⇒ p ‖A q

α
−→P‖AQ p′ ‖A q

q
α
−→Q q′, α < A, (α = τ or p 6

τ
−→P) =⇒ p ‖A q

α
−→P‖AQ p ‖A q′

p
a
−→P p′, q

a
−→Q q′, a ∈ A =⇒ p ‖A q

a
−→P‖AQ p′ ‖A q′

• p ‖A q ∈ FP‖AQ if p ∈ FP or q ∈ FQ.
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Theconjunction operator∧ on LLTS is a synchronous product (or parallel composition) for
visible transitions and an asynchronous product forτ-transitions, and also favoursτ-transitions.
Processp∧ q is inconsistent ifp or q is inconsistent; or ifp andq are stable but have different
ready sets; or if it becomes inconsistent by backward propagation. Formally:

Definition 3 (Conjunction operator [1]). The conjunction of the two LLTSs〈P,−→P, FP〉 and
〈Q,−→Q, FQ〉 is the LLTS〈P∧ Q,−→P∧Q, FP∧Q〉:

• P∧ Q =df {p∧ q | p ∈ P, q ∈ Q}

• −→P∧Q is determined by the following operational rules:

p
τ
−→P p′ =⇒ p∧ q

τ
−→P∧Q p′ ∧ q

q
τ
−→Q q′ =⇒ p∧ q

τ
−→P∧Q p∧ q′

p
a
−→P p′, q

a
−→Q q′ =⇒ p∧ q

a
−→P∧Q p′ ∧ q′

• FP∧Q is the least set containing each p∧ q that satisfies at least one of the following
conditions:

(C1) p ∈ FP or q ∈ FQ;

(C2) p∧ q 6
τ
−→P∧Q andI(p) , I(q);

(C3) ∃α ∈ I(p∧ q)∀p′ ∧ q′. p∧ q
α
−→P∧Q p′ ∧ q′ =⇒ p′ ∧ q′ ∈ FP∧Q;

(C4) p∧ q cannot stabilise.

Here, a conjunction is inconsistent if a conjunct is inconsistent (cf. Cond. (C1)), and Conds. (C2)
and (C3) reflect our intuition of inconsistency and backwardpropagation. Cond. (C4) is added
to ensure (LTS2); note that this condition is not automatically enforced since it isnot true that
p∧ q can stabilise if bothp andq can stabilise.

Thedisjunction operator∨ is an internal choice operator, wherep∨q is inconsistent if bothp
andq are. Fig. 1(e) depicts a disjunction of an inconsistent process with a consistent process that
can engage in actionb; hence, the disjunctive process is consistent. Thus,p ∨ q essentially is
a process with twoτ-transitions top and resp.q; correspondingly,τ is not so much seen as an
internal action in our setting but primarily indicates a logical disjunct.

2.4. Refinement on Logic LTS
Our refinement preorder is a variant of ready simulation [4, 5, 6] and thus ensures refinement

via successively resolving choices (nondeterminism):

Definition 4 (Ready simulation on LLTS [2]). Let 〈P,−→P, FP〉, 〈Q,−→Q, FQ〉 be two LLTSs.
RelationR ⊆ P × Q is a stable ready simulation relation, or stable rs-relation for short, if the
following conditions hold, for any〈p, q〉 ∈ R and a∈ A:

(RS1) p, q stable (RS3) p
a
=⇒| p′ =⇒ ∃q′. q

a
=⇒| q′ and〈p′, q′〉 ∈ R

(RS2) p < FP =⇒ q < FQ (RS4) p < FP =⇒ I(p) = I(q)
We write p⊏

∼RS
q if there exists a stable rs-relationR such that〈p, q〉 ∈ R. Further, p isready

simulatedby q, in symbols p⊑RS q, if ∀p′. p
ǫ
=⇒| p′ =⇒ ∃q′. q

ǫ
=⇒|q′ and p′ ⊏∼RS

q′. Finally, we
let =RSstand for the kernel of⊑RS.
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While we allow transitions leaving inconsistent states, they are ignored in the above definition.
Thus, one may remove such transitions without changing the relevant behaviour of processes;
for technical convenience, we do not include this additional normalisation when defining our
operators. The above operators satisfy the following properties with respect to⊑RS:

Proposition 5 ([2]). Let p, q, r be processes, p′ ⊑RSq′ and A⊆ A.
(1) Compositionality: p′ ∧ r ⊑RS q′ ∧ r, p′ ∨ r ⊑RSq′ ∨ r, p′‖Ar ⊑RS q′‖Ar;
(2) ∧ is conjunction: r ⊑RS p∧ q ⇐⇒ r ⊑RS p and r⊑RS q;
(3) ∨ is disjunction: p∨ q ⊑RS r ⇐⇒ p ⊑RS r and q⊑RS r.

The second item above demonstrates that∧ is indeed conjunction: clearly, a process should
implement a conjunction if and only if it implements both conjuncts.

In addition, we have shown in [2] that relation⊑RS is fully abstract for the preorder⊑F , which
is defined byp ⊑F q if and only if q ∈ FQ =⇒ p ∈ FP (i.e., an inconsistent specificationq
cannot have a consistent implementationp as refinement). Formally:

Theorem 6 (Full abstraction [2]). The largest precongruence within⊑F , with respect to paral-
lel composition and conjunction, equals⊑RS.

This means that our simulation-type preorder is justified simply by starting from a binary basic
observable, namely consistency; moreover, the preorder iscompositional for parallel composi-
tion and conjunction, which is also true for other operators, e.g., disjunction, prefixing, external
choice and hiding [2].

3. Temporal Logic & Logic LTS

The temporal properties we embed in LLTS are essentially thesafety properties of the uni-
versal fragment of the temporal logicaction-based CTL[12], adapted to our setting. This is the
largest fragment we can hope for since, firstly, LLTS is basedon standard LTS, without Büchi
annotations or similar acceptance conditions; hence, finite-state LLTS is not expressive enough
for encoding liveness (or fairness) properties. Secondly,we wish for the logic satisfaction rela-
tion |= to be compatible with⊑RS, i.e., p |= φ ⇐⇒ p ⊑RS φ, for any processp and formulaφ
(cf. Thm. 15 below). Hence, by transitivity of⊑RS, we have thatp ⊑RS q andq |= φ implies
p |= φ, i.e., the implementationp with the ‘smaller’ behaviour has to satisfy more formulas than
the specificationq. This justifies our focus on theuniversalfragment.

3.1. Syntax, Satisfaction& Characterisation

We consider the following setF of temporal-logic formulasφ:

φ ::= tt | ff | en(a) | dis(a) | φ ∨ φ | φ ∧ φ | [a]φ | �φ | φWφ

Here, the atomic propositionsen(a) anddis(a) denote the enabledness and resp. disabledness
of actiona, and [a], � and W are the usualnext, always(generally) andunless(weak until)
operators. The latter can be seen as a weak version of the until in [12]. In addition, formulatt
(resp.ff) may be derived asen(a) ∨ dis(a) (resp.en(a) ∧ dis(a)); moreover,�φ is equivalent
to φW ff (cf. Sec. 3.3). Note that havingen(a) anddis(a) in the logic is similar to positive normal
forms in state-based logics.
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The meaning of formulas is defined via a satisfaction relation |=. Recall that, in our setting,
actionτ is not so much seen as an internal action, but an instable processp is a ‘disjunction’;

hence,p |= φ should mean thatp0 |= φ for all ‘disjuncts’ p0 of p, i.e., for eachp0 with p
ǫ
=⇒| p0.

Thus, we define|= as follows, where
A
=⇒| stands for

⋃
a∈A

a
=⇒| :

Definition 7 (Satisfaction relation). Given an LLTS with state set P, the satisfaction relation
|=⊆ P× F is defined by the following rules:

p |= tt always
p |= ff if p ∈ F

p |= en(a) if ∀p0. p
ǫ
=⇒| p0 =⇒ p0

a
−→

p |= dis(a) if ∀p0. p
ǫ
=⇒| p0 =⇒ p0 6

a
−→

p |= φ ∨ ψ if ∀p0. p
ǫ
=⇒| p0 =⇒ (p0 |= φ or p0 |= ψ)

p |= φ ∧ ψ if ∀p0. p
ǫ
=⇒| p0 =⇒ (p0 |= φ and p0 |= ψ)

p |= [a]φ if ∀p0, p1. p
ǫ
=⇒| p0

a
=⇒| p1 =⇒ p1 |= φ

p |= �φ if ∀p0, p1, . . . , pn. (p
ǫ
=⇒| p0

A
=⇒| p1 . . .

A
=⇒| pn =⇒ pn |= φ)

p |= φWψ if ∀p0, p1, . . . , pn. (p
ǫ
=⇒| p0

A
=⇒| p1 . . .

A
=⇒| pn =⇒ (pn |= φ or ∃i ≤ n. pi |= ψ))

This definition coincides forτ-lessp with the standard one but, in contrast to processes within
LTS, ff is satisfiable, namely by inconsistent processes.

To motivate the quantification “∀p0. p
ǫ
=⇒| p0” for the ∨-case further, consider that|= must

be defined such that the processp that has one initiala-transition followed by ab-transition,
satisfies formula [a]en(b). Similarly, the processq that has one initiala-transition followed by a
c-transition, should satisfy [a]en(c). Since we aim for a setting in which|=may be freely replaced
by⊑RS and since⊑RS is a precongruence, we must havep∨ q |= [a]en(b)∨ [a]en(c). In a classic
definition of satisfiability, this would meanp∨ q |= [a]en(b) or p∨ q |= [a]en(c), which are both
clearly false. In addition and as claimed above, each process p indeed satisfiesen(a) ∨ dis(a)
since each ‘disjunct’p0 of p is stable and hence either can engage ina (i.e., satisfiesen(a)) or
cannot (i.e., satisfiesdis(a)).

As an aside and provided thatp andq belong to LLTSs that arefinitely branching, we get a
Hennessy-Milner-style characterisation of⊑RS; here,FRS are theessential formulas, namely the
formulas inF that do neither contain operators∧, � and W , nor sub-formulastt anddis(a), i.e.,

φRS ::= ff | en(a) | φRS∨ φRS | [a]φRS.

Theorem 8 (Characterisation).p ⊑RSq ⇐⇒ ∀φ ∈ FRS. q |= φ =⇒ p |= φ.

This characterisation is pretty much a corollary to an analogous result of Bloom [4], and is thus
not proved here. It should be noted that, in his thesis, Bloomconsidered a characterisation based
on the opposite implication than the one we require. Correspondingly, he used the dual fragment
of formulas, employing〈a〉-modalities instead of [a]-modalities.

3.2. Embedding in Logic LTS

We embed our temporal formulas into LLTS and present the desired compatibility result
between|= and⊑RS. The embedding is conducted along the structure of formulas. Formulatt
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τ
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(a)
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A (not cont. a) A (arbitrary)

... ... ......

Figure 2: Embedding of temporal-logic formulas into LLTS.

corresponds to the initial state of the LLTS sketched in Fig.2(a), which can nondeterministically
select an arbitrary ready setA ⊆ A via a τ-transition to processA. From there, it can engage
in any transition labelled with an actionb ∈ A and return tott. Hence,tt is a process that can
simulate any other process, and is thus indeed the desired ‘universal’ process. Formulaff is
trivially mapped to the inconsistent process depicted in Fig. 2(b), which can only ready simulate
an inconsistent process. Formulaen(a) corresponds to the initial state of the LLTS in Fig. 2(c).
This can select any ready setA containinga by silently moving to processA, from where it can
engage in ab-transition, for anyb ∈ A, to tt. We embed formuladis(a) analogously, where we
requirea < A instead ofa ∈ A; see Fig. 2(d).

Formulaφ ∧ ψ (resp.φ ∨ ψ) is embedded by conjunctively (resp. disjunctively) composing
the LLTSs of the embeddings ofφ andψ, using operator∧ (resp.∨) on LLTS. The embedding of
a formula [a]φ is sketched in Fig. 2(e). Again, the initial process may choose an arbitrary ready
setA. The corresponding processA can engage in ab-step, for anyb ∈ A \ {a}, to tt. In addition,
if a ∈ A, there is ana-step to the initial state ofφ’s embedding. Hence, anya-derivative of [a]φ
behaves asφ, whereas arbitrary behaviour is permitted for differently labelled derivatives.

We now define�- andW -operators on LLTS, which facilitate the straightforward embedding
of formulas�φ andφWψ:

Definition 9 (�-operator, “always”). Let 〈P,−→P, FP〉 be an LLTS. Then,�p, for p ∈ P, is
process(p) in LLTS〈�P,−→�P, F�P〉, where:

• �P =df {~p = (p1, p2, . . . , pn) | n≥1, ∀1≤i≤n. pi∈P} is the set of finite vectors over P.

• −→�P is defined by the following operational rules:

pi
τ
−→P p′i =⇒ (p1, . . . , pi , . . . , pn)

τ
−→�P (p1, . . . , p′i , . . . , pn)

∀i. pi
a
−→P p′i =⇒ (p1, . . . , pn)

a
−→�P (p′1, . . . , p

′
n, p) .

• F�P is the least set of finite vectors such that~p = (p1, . . . , pn) ∈ F�P if any one of the
following conditions holds:

(BF1) ∃i. pi ∈ FP;
(BF2) ~p stable but∃i, j.I(pi) , I(p j);

(BF3) ∃α ∈ I(~p)∀~p ′. ~p
α
−→�P ~p ′ =⇒ ~p ′ ∈ F�P;

(BF4) ~p cannot stabilise outside F�P, i.e., via a sequence of transitions over states that
are not in F�P.
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In the sequel, we use the convention that~p ∈ �P has componentsp1, p2, . . . , pn. Observe that
〈�P,−→�P, F�P〉 is indeed an LLTS and that~p behaves as the conjunction

∧
i pi . Intuitively, the

above construction addsp to the process vector after every visible step. To illustrate the above
construction, we sketch part of the LLTS of�en(a) in Fig. 3.

(tt, en(a))(en(a))

τ

τ ({a,b})...
... τ

τ τ

τ τ

τ

τ ...
...

(tt, {a,c})

({a,c}, en(a))

τ

τ

...

a

c
({a,c}, {a,c})

(tt, tt, en(a))

b

a

Figure 3: Sketch of the LLTS of�en(a).

Although the employed vector notation is convenient for proving compositionality, its use
immediately leads to an infinite state space. However, we could have used processsetsinstead
of process vectors, which would result in an=RS-equivalent definition. This would make the
process sets of�P finite if P is finite, and permit an implementation of the�-operator.

Definition 10 (W -operator, “unless”). Let 〈P,−→P, FP〉 and 〈Q,−→Q, FQ〉 be LLTSs. Then,
pW q, for p∈ P and q∈ Q, is a process within the LLTS〈PW Q,−→PW Q, FPW Q〉, where:

• PW Q =df {pW q} ∪�P∪ (�P× Q) with �P = {~p | n≥1, ∀1≤i≤n. pi ∈ P}.

• −→PW Q is defined by the following operational rules:

always pW q
τ
−→PW Q 〈(), q〉

always pW q
τ
−→PW Q (p)

pi
τ
−→P p′i =⇒ (p1, . . . , pi , . . . , pn)

τ
−→PW Q (p1, . . . , p′i , . . . , pn)

∀i. pi
a
−→P p′i =⇒ (p1, . . . , pn)

a
−→PW Q 〈(p′1, . . . , p

′
n), q〉

∀i. pi
a
−→P p′i =⇒ (p1, . . . , pn)

a
−→PW Q (p′1, . . . , p

′
n, p)

q′
τ
−→Q q′′ =⇒ 〈(p1, . . . , pn), q′〉

τ
−→PW Q 〈(p1, . . . , pn), q′′〉

pi
τ
−→P p′i =⇒ 〈(p1, . . . , pn), q′〉

τ
−→PW Q 〈(p1, . . . , p′i , . . . , pn), q′〉

q′
a
−→Q q′′ and∀i. pi

a
−→P p′i =⇒ 〈(p1, . . . , pn), q′〉

a
−→PW Q 〈(p′1, . . . , p

′
n), q

′′〉 .

• FPW Q is the least set such that r∈ FPW Q if any one of these conditions holds:

(RF1) r = ~p or r = 〈~p, q′〉 so that∃i. pi ∈ FP, or r = 〈~p, q′〉 and q′ ∈ FQ;
(RF2) r is stable, equals~p or 〈~p, q′〉 and∃i, j.I(pi) , I(p j),

or r = 〈~p, q′〉 stable and∃i.I(pi) , I(q′);

(RF3) ∃α ∈ I(r)∀r ′. r
α
−→PW Q r ′ =⇒ r ′ ∈ FPW Q;

(RF4) r cannot stabilise outside FPW Q.

This LLTS is well-defined. Processes〈~p, q〉 should be thought of as
∧

i pi ∧ q. Intuitively, pW q
behaves similarly to�p; however, initially and at any stable state along a computation, it may
decide to withdraw from conjoiningp in favour of a one-off conjunction withq.
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Theorem 11 (Compositionality). Let p ⊑RS q, r ⊑RS s and a ∈ A. Then,[a]p ⊑RS [a]q,
�p ⊑RS�q and pW r ⊑RS qW s.

An essential point when proving this theorem is the reasoning about inconsistencies; e.g., for a
�P LLTS, we adapt the concept of witness of [1]:

Definition 12 (�-witness). A �-witnessfor �P is a set W⊆ �P such that, for all~p ∈ W, the
following conditions hold:

(W1) ∀i. pi < FP;
(W2) ~p stable=⇒ ∀i, j.I(pi) = I(p j);

(W3) ∀α ∈ I(~p)∃~p ′. ~p
α
−→�P ~p ′ and~p ′ ∈W;

(W4) ~p can stabilise in W, i.e.,

∃~p1, . . . ~pm. ~p
τ
−→�P ~p1

τ
−→�P . . .

τ
−→�P ~pm 6

τ
−→�P and ∀i. ~pi ∈W.

The following straightforward property of�-witnesses gives us a useful tool for proving that
alwaysprocesses are consistent:

Proposition 13. ~p < F�P if and only if ∃�-witness W. ~p ∈W.

P. Direction “=⇒” follows from the fact thatF�P, the complement ofF�P, is an�-witness.
For direction “⇐=” we note thatW satisfies the conditions ofF�P, whenceF�P ⊆W. �

The concrete witness needed in the�-compositionality proof is the following:

Lemma 14 (Concrete witness).Given stable p< FP and q ∈ Q with p⊏
∼RS

q, the set W=df

W1 ∪W2 ⊆ �Q is a�-witness, where

W1 =df {~q = (q1, . . . , qn) | ∃~p = (p1, . . . , pn). ~p < F�P and∀i. pi ⊏
∼RS

qi} ;

W2 =df {~q = (q1, . . . , qn) | ∃~q ′ = (q′1, . . . , q
′
n). ~q

′ ∈W1 and∀i. qi
ǫ
=⇒| q′i } .

The proof of this lemma is straightforward and contained in the appendix. A similar witness
concept and construction is needed for proving theW -operator compositional. We are now in a
position to prove Thm. 11:

P. [of Thm. 11]Note that the compositionality results for parallel composition, conjunction
and disjunction were stated and proved in [2].

We start off with sketching the compositionality proof for [a]. Firstly, stable processA in
the encoding [a]P of [a]p is matched by stable processA in the encoding [a]Q of [a]q, showing
Conds. (RS1) and (RS4). For Cond. (RS2), we observe: ifA ∈ F[a]Q, then we must havea ∈ A

and q ∈ FQ, thus p ∈ FP and A ∈ F[a]P. Now, we assumeA < F[a]P; if A
a
−→F p

ǫ
=⇒| p0

then, sincep ⊑RS q by assumption, there is someq0 with q
ǫ
=⇒|q0 and p0 ⊏

∼RS
q0; furthermore,

A
a
−→F q

ǫ
=⇒| q0 in [a]Q. For b ∈ A \ {a}, we haveA

b
−→F tt in both [a]P and [a]Q. Thus,

Cond. (RS3) holds, too.
We now turn to proving compositionality regarding operator�. If p ∈ FP, then�p ⊑RS �q

is trivial. Now considerp < FP (and henceq < FQ). Since the processes on which�p can

stabilise are exactly those ( ˆp) with p
ǫ
=⇒| p̂ (and similarly forq), we only have to establish the

following statement:
10



Let p ⊑RS q be given, i.e., for all ˆp with p
ǫ
=⇒| p̂, there exists some ˆq such thatq

ǫ
=⇒| q̂ and

p̂⊏
∼RS

q̂. We show that ( ˆp) ⊏
∼RS

(q̂) in �P and resp.�Q. To do so, it is sufficient to prove that

R =df {〈~p, ~q〉 | ~p = (p1, . . . , pn), ~q = (q1, . . . , qn), ∀1≤i≤n. pi ⊏
∼RS

qi}

is a stable rs-relation. Obviously,〈(p̂), (q̂)〉 ∈ R. We verify Conds. (RS1)–(RS4) of Def. 4, using
the�-witnessW1 ∪W2 of Lemma 14:

(RS1) Here,~p and~q are stable since allpi andqi are stable due topi ⊏
∼RS

qi .

(RS2) If ~p < F�P, then~q ∈W1 sincepi ⊏
∼RS

qi for all i. Hence,~q < F�Q by Prop. 13.

(RS3) Let ~p
a
=⇒| ~p′, i.e., (p1, . . . , pn)

a
−→F (p1, . . . , pn, p)

ǫ
=⇒| (p′1, . . . , p

′
n, p̂) = ~p′ for some suit-

ably chosenpi . Hence,pi
ǫ
=⇒| p′i and resp.p

ǫ
=⇒| p̂, as well aspi

a
−→F pi , for all 1 ≤ i ≤ n.

Therefore, bypi ⊏
∼RS

qi and Cond. (RS3), there existqi andq′i such thatqi
a
−→F qi

ǫ
=⇒| q′i

and p′i ⊏
∼RS

q′i , and also ˆp⊏
∼RS

q̂ by assumption. Thus,~q
a
−→ (q1, . . . , qn, q)

ǫ
=⇒ ~q′ =df

(q′1, . . . , q
′
n, q̂) 6

τ
−→. Since~p′ < F�P, we have~q′ ∈ W1, whence all processes along the

computation (q1, . . . , qn, q)
ǫ
=⇒ ~q′ are inW2. Finally, ~q < F�Q by Cond. (RS2) above.

Summarising and referring to Prop. 13, we have~q
a
=⇒| ~q′ and, obviously,〈~p′, ~q′〉 ∈ R.

(RS4) The premise~p < F�P and the stability of~p by Cond. (RS1) implyI(~p) = I(p1) = . . . =
I(pn). Thus, bypi ⊏

∼RS
qi according to the definition ofR, we haveI(pi) = I(qi) for all i.

Therefore,I(~p) = I(q1) = . . . = I(qn) = I(~q) by our operational rules.

This completes the compositionality proof with respect to the�-operator. The proof for theW -
operator follows along similar lines; it is omitted here since it does not require any new concept
but only additional notation and case distinctions. �

We now turn to stating and proving the most important result of this article:

Theorem 15 (Compatibility). Let p be a process andφ a temporal-logic formula inF . Then,
p |= φ ⇐⇒ p ⊑RSφ.

The proof of this theorem uses the following lemma for dealing with process vectors in the case
thatφ = �ψ; its proof can be found in the appendix.

Lemma 16. Let~q = (q1, . . . , qn) ∈ �Ψ and p⊑RS~q. Then, p⊑RSqi for all 1 ≤ i ≤ n.

P. [of Thm. 15] (Hint: This proof is reused in connection with Table 2 below; the reader
might want to postpone reading this proof until the latter parts of Sec. 3.3.)

The proof is by induction on the structure ofφ. Note that the casesφ = tt andφ = ff are
trivial, the caseφ = dis(a) is analogous to the one forφ = en(a), and the case forφ = ψ1 Wψ2

follows along similar lines to the one forφ = �ψ. Therefore, we focus on the remaining cases:

• φ = en(a): (“=⇒”) Let p |= en(a), i.e., p
ǫ
=⇒| p0 implies p0

a
−→, for any p0. Then,p ⊑RS

en(a) sincep0 ⊏
∼RS
I(p0).

(“⇐=”) For all p0 such thatp
ǫ
=⇒| p0 we must have some action setA containinga with

p0 ⊏
∼RS

A. Since p0 < F, this means by Cond. (RS4) thata ∈ I(p0), and by (LTS1)

that p0
a
−→F. Hence,p |= en(a).
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• φ = [a]ψ: (“=⇒”) Let p |= [a]ψ and consider some processp0 with p
ǫ
=⇒| p0. By the defini-

tion of |=we know thatp1 |= ψ for all p1 such thatp0
a
=⇒| p1. Hence,p1 ⊑RS ψ by induction

hypothesis, which impliesψ
ǫ
=⇒|q1 for someq1 with p1 ⊏

∼RS
q1. We arguep0 ⊏

∼RS
I(p0) by

showing that{〈p0,I(p0)〉} ∪ ⊏
∼RS

is a stable rs-relation. Obviously, the pair〈p0,I(p0)〉
satisfies Conds. (RS1), (RS2) and (RS4) of Def. 4. Regarding Cond. (RS3), we have for

all p0
b
=⇒| p1 with b , a (andb ∈ I(p0)) thatI(p0)

b
=⇒| tt andp1 ⊏

∼RS
tt. Furthermore, for

all p0
a
=⇒| p1, we haveI(p0)

a
−→F ψ

ǫ
=⇒| q1 with p1 ⊏

∼RS
q1, as noted above. Altogether, we

thus obtainp ⊑RS [a]ψ.

(“⇐=”) Let p ⊑RS [a]ψ. Therefore, wheneverp
ǫ
=⇒| p0, we have [a]ψ

ǫ
=⇒|A for someA

with p0 ⊏
∼RS

A. Obviously,A = I(p0). By our LLTS encoding of [a]ψ and Cond. (RS3),

p0
a
=⇒| p1 for any suchp1 impliesψ

ǫ
=⇒|q1 for someq1 with I(p0)

a
=⇒|q1 and p1 ⊏

∼RS
q1.

Hence,p1 ⊑RS ψ and, by induction hypothesis,p1 |= ψ. Therefore,p |= [a]ψ.

• φ = ψ1 ∨ ψ2: (“=⇒”) Let p |= ψ1 ∨ ψ2. Wheneverp
ǫ
=⇒| p0, thenp0 |= ψ1 or p0 |= ψ2, i.e.,

p0 ⊑RS ψ1 or p0 ⊑RS ψ2 by induction hypothesis. Assume w.l.o.g. thatp0 ⊑RS ψ1, whence

ψ1
ǫ
=⇒|q0 for someq0 with p0 ⊏

∼RS
q0. By ψ1 ∨ ψ2

ǫ
=⇒|q0, we concludep ⊑RS ψ1 ∨ ψ2.

(“⇐=”) Let p ⊑RS ψ1∨ψ2 andp
ǫ
=⇒| p0. Therefore, w.l.o.g.,ψ1∨ψ2

ǫ
=⇒|q0 due toψ1

ǫ
=⇒| q0

with p0 ⊏
∼RS

q0. Hence,p0 ⊑RS ψ1 and, by induction hypothesis,p0 |= ψ1. This implies
p |= ψ1 ∨ ψ2.

• φ = ψ1 ∧ ψ2: (“=⇒”) Let p |= ψ1∧ψ2. Wheneverp
ǫ
=⇒| p0, thenp0 |= ψ1 andp0 |= ψ2, i.e.,

p0 ⊑RS ψ1 andp0 ⊑RS ψ2 by induction hypothesis. By Prop. 5(2), we getp0 ⊑RS ψ1 ∧ ψ2.
Hence,p ⊑RS ψ1 ∧ ψ2.

(“⇐=”) Let p ⊑RS ψ1 ∧ ψ2 andp
ǫ
=⇒| p0. Thus,p0 ⊑RS ψ1 ∧ ψ2 and, by Prop. 5(2), we can

now conclude thatp0 ⊑RS ψ1 and p0 ⊑RS ψ2. Hence, by induction hypothesis,p0 |= ψ1

andp0 |= ψ2 and thusp |= ψ1 ∧ ψ2.

• φ = �ψ: Recall that
A
=⇒| stands for

⋃
a∈A

a
=⇒| . In this part of the proof, we writep

A∗

=⇒| p′

wheneverp
ǫ
=⇒| p0

A
=⇒| p1 . . .

A
=⇒| pn = p′ with n ≥ 0.

(“=⇒”) We first prove that

R =df {〈p
′′, ~q〉 | p

A∗

=⇒| p′′, ~q ∈ �Ψ, ∀i. p′′ ⊏∼RS
qi}

is a stable rs-relation. We verify Conds. (RS1)–(RS4) of Def. 4:

(RS1) p′′ and allqi are stable, whence~q is stable, too.

(RS2) Here, it is sufficient to show thatW′1 ∪W′2 is a witness, where

W′1 =df {~q ∈ �Ψ | ∃p′′. p
A∗

=⇒| p′′ and∀i. p′′ ⊏∼RS
qi}

W′2 =df {~q ∈ �Ψ | ∃~q′ ∈W′1 ∀i. qi
ǫ
=⇒|q′i } .
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The proof is similar to the one of Lemma 14, except for the proof of (W3) in caseα ,

τ. Here,~q
α
−→ means~q ∈ W′1 andqi

α
−→ for all i. Sincep′′ < F, we getp′′

α
−→,

by Cond. (RS4), andp′′
α
=⇒| p′′′. By Cond. (RS3), there existq′′i andq′i such that

qi
α
−→F q′′i

ǫ
=⇒|q′i andp′′′ ⊏∼RS

q′i . Moreover,p′′′ |= ψ, whencep′′′ ⊑RS ψ by induction

hypothesis, and thereforep′′′ ⊏
∼RS

ψ0 for someψ
ǫ
=⇒|ψ0. Thus, (q′1, . . . , q

′
n, ψ0) ∈ W′1

and~q
α
−→ (q′′1 , . . . , q

′′
n , ψ) ∈W′2.

(RS3) Let p′′
a
=⇒| p′′′. Then, for someq′i , qi

a
=⇒| q′i and p′′′ ⊏∼RS

q′i by Cond. (RS3) for

p′′ ⊏
∼RS

qi . Furthermore,p
A∗

=⇒| p′′′ implies p′′′ |= ψ, i.e., by induction hypothesis,

p′′′ ⊑RS ψ and p′′′ ⊏
∼RS

ψ0 for someψ
ǫ
=⇒|ψ0. Thus,~q

a
−→ (q′′1 , . . . , q

′′
n , ψ)

ǫ
=⇒

(q′1, . . . , q
′
n, ψ0) 6

τ
−→, for suitably chosenq′′1 , . . . , q

′′
n , and〈p′′′, (q′1, . . . , q

′
n, ψ0)〉 ∈ R.

Therefore, we have (q′1, . . . , q
′
n, ψ0) ∈ W′1, and all processes along the computation

are inW′2. By Prop. 13, this proves~q
a
=⇒| (q′1, . . . , q

′
n, ψ0).

(RS4) Let p′′ < F. Then, Cond. (RS4) forp′′ ⊏
∼RS

qi yieldsI(p′′) = I(qi) for all i, i.e.,
I(p′′) = I(~q) by the definition of�Ψ.

Now, p ⊑RS �ψ by the following. Firstly,p |= ψ impliesp ⊑RS ψ by induction hypothesis.

Together withp
ǫ
=⇒| p0, this guarantees the existence of someψ0 such thatψ

ǫ
=⇒|ψ0 and

p0 ⊏
∼RS

ψ0. Then, (ψ)
ǫ
=⇒| (ψ0) in �Ψ and〈p0, (ψ0)〉 ∈ R. Thus,p ⊑RS (ψ) = �ψ.

(“⇐=”) Let p
A∗

=⇒| p′. Then, byp ⊑RS �ψ, there exists some~ψ′ such that (ψ)
A∗

=⇒| ~ψ′ (per-
forming the same sequence of visible actions) andp′ ⊏∼RS

~ψ′. By Lemma 16, we have

p′ ⊏∼RS
ψ′i for all i. By our operational rules, the last componentψ′ of ~ψ′ is such that

ψ
ǫ
=⇒|ψ′. Hence,p′ ⊑RS ψ and, by induction hypothesis,p′ |= ψ. Thus,p

A∗

=⇒| p′ implies
p′ |= ψ, i.e., p |= �ψ. �

The classic property of entailment is now a corollary to Thm.15:

Corollary 17 (Entailment). φ ⊑RSψ ⇐⇒ ∀p. p |= φ =⇒ p |= ψ.

P. Letφ ⊑RS ψ andp |= φ. Then,p ⊑RS φ ⊑RS ψ by Thm. 15, and we are done by transitivity
of ⊑RS. Conversely, ifp |= φ implies p |= ψ, thenp ⊑RS φ implies p ⊑RS ψ, again by Thm. 15,
for all p. Hence,φ ⊑RS ψ when settingp = φ. �

3.3. Laws for Logic LTS

Our setting of LLTS satisfies many desirable, and often expected, laws. Firstly, considering
the “process-algebraic” fragment of LLTS, e.g., our CSP-style parallel composition operator‖A is
commutative and associative for fixed action setsA ⊆ A, as can easily be seen from its definition
(cf. Def. 2).

Regarding the propositional-logic fragment, we first recall that ∨ is disjunction and∧ is
conjunction (cf. Prop. 5). Furthermore, disjunction and conjunction are commutative and asso-
ciative. Note that associativity of conjunction follows from Prop. 5(2):r ⊑RS (p1 ∧ p2) ∧ p3⇔

r ⊑RS p1 andr ⊑RS p2 andr ⊑RS p3 ⇔ r ⊑RS p1 ∧ (p2 ∧ p3). Applying this equivalence for
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Table 1: LLTS laws of propositional logic

(1a,b) p∧ p =RS p p∨ p =RS p (Idempotence)
(2a,b) p∧ (p∨ q) =RS p p∨ (p∧ q) =RS p (Absorption)
(3a,b) p∨ ff =RS p p∧ tt =RS p (Neutral elements)
(4a,b) p∧ ff =RS ff p∨ tt =RS tt (Null elements)
(5a,b) p∧ q ⊑RS p p⊑RS p∨ q
(6) p∧ q =RS p ⇔ p∨ q =RS q ⇔ p ⊑RS q
(7a,b) ff ⊑RS p p⊑RS tt

Table 2: LLTS laws of temporal logic

(8) [a](p∧ q) =RS [a]p∧ [a]q (13) en(a) ∨ dis(a) =RS tt
(9) �(p∧ q) =RS �p∧�q (14) en(a) ∧ dis(a) =RS ff

(10) �p =RS p∧ [A](�p) (15) dis(a) ∧ [a]p =RS dis(a)
(11) �p =RS pWff
(12) pW q =RS q∨ (p∧ [A](pW q))

r = (p1 ∧ p2) ∧ p3 andr = p1 ∧ (p2 ∧ p3) shows the claim. In addition, disjunction and con-
junction are distributive and satisfy the standard laws of propositional logic shown in Table 1.
Distributivity and Laws (1), (4a), (5) and (6) are proved in [2]. Laws (2a) and (2b) can be shown
with Prop. 5(2) and (3), distributivity and idempotence. Laws (3a) and (7a) are direct from the
definitions. For Law (7b) we have already argued in Sec. 3.2; its validity can also be checked by
consulting Thm. 15. Finally, Laws (3b) and (4b) follow from Laws (6) and (7b).

For the temporal-logic fragment we have the laws in Table 2. These are standard except for
Laws (13)–(15) which involve the atomic propositionsen(a) anddis(a). The notation [A] has to
be understood as the conjunction over [a] with a ∈ A, i.e., we assume here that the alphabetA

is finite; of course, one can also generalise [a] to [A] for arbitrary setsA of actions. All laws
in Table 2 can be proved by appealing to the satisfaction relation (cf. Def. 7) and entailment
(cf. Cor. 17). This argument works only ifp andq in Table 2 are temporal formulas. But in
fact, the laws are also valid for general LLTSs. To see this, we have to generalise our results
on compatibility and entailment. We first define an extended satisfaction relation|=′ for general
LLTS p and such LLTSq that have a logic operator at top-level, i.e.,

tt, ff, en(a), dis(a), p1 ∨ p2, p1 ∧ p2, [a]p′, �p, or p1 W p2

as in Def. 7 but with|= replaced by⊑RS in the if-clauses. Then, Thm. 15 and hence Cor. 17
also hold for|=′. This is because the proof of Thm. 15 works for|=′, too; it repeatedly appeals
to induction to concludep ⊑RS φ from p |= φ (or vice versa), and this can simply be omitted
when dealing with|=′. Now the laws in Table 2 can be proved by referring to|=′ and employing
Cor. 17 for|=′; in other words, temporal-logic arguments within the LLTS framework can directly
be lifted to our “process-algebraic” setting.

Next, we turn our attention to laws of the formp ‖A q ⊑RS r which mix process-algebraic
operators and temporal-logic operators in casep, q andr contain a logic operator. Such laws
supportmodular verificationas is shown by the following result:
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Theorem 18 (Modular verification). Letφ1, φ2 andφ3 be temporal-logic formulas and S⊆ A
a synchronisation set. Then,φ1 ‖S φ2 ⊑RS φ3 if and only if p‖S q |= φ3 for all LLTS processes
p |= φ1 and q|= φ2.

The appeal of this theorem is that one can checkφ1 ‖S φ2 ⊑RS φ3 without considering all
processesp andq. In addition, we do not have to develop a separate temporal-logic counterpart
to process-algebraic parallel composition.

P. “=⇒”: If p |= φ1 and q |= φ2 then p ‖S q ⊑RS φ1 ‖S φ2 ⊑RS φ3 by compatibility,
compositionality and assumption. Thus,p ‖S q |= φ3 by compatibility again.

“⇐=”: Choosep =df φ1 andq =df φ2. Then,p ⊑RS φ1 andq ⊑RS φ2; p |= φ1 andq |= φ2 by
compatibility;p ‖S q |= φ3 by assumption; andφ1 ‖S φ2 ⊑RS φ3 by compatibility again. �

To illustrate Thm. 18, we prove the following two simple instances:

en(a) ‖S en(a) ⊑RS en(a) (1)

dis(a) ‖S tt ⊑RS dis(a) if a ∈ S (2)

For the proof of Instance (1), first note thaten(a) ‖S en(a) can stabilise only to someA ‖S A′

with a ∈ A ∩ A′ (cf. Fig. 2(c)). Processen(a) can match this by stabilising to the process
p =df (A∩A′)∪ (A∪A′) \S, since this set contains actiona. The transitions ofA ‖S A′ are of the

form A ‖S A′
b
−→ tt ‖S tt for b ∈ S ∩ A∩ A′ and, without loss of generality,A ‖S A′

b
−→ tt ‖S A′

for b ∈ A\S. These transitions can be matched byp
b
−→ tt sincett ‖S tt ⊑RS tt andtt ‖S A ⊑RS tt

by Law (7b) in Table 1, as desired. The proof of Instance (2) isanalogous, except thata < A and
hencea < (A∩ A′) ∪ (A∪ A′) \ S by assumption.

a

p

b c

a

Figure 4: Example LLTS.

As an aside, we observe that laws likep ∧ (q ‖A r) =RS (p ∧ q) ‖A (p ∧ r) do not hold.
Considerq =df r =df tt and p as in Fig. 4, for whichp ∧ (tt ‖A tt) =RS p ∧ tt =RS p cannot
deadlock after actiona while (p∧ tt) ‖A (p∧ tt) =RS p ‖A p can.

3.4. Duality
We conclude this section by briefly discussing negation. Since our setting of LLTS is not ex-

pressive enough to encode liveness properties, such as the formula¬�φ, we do not have negation.
Furthermore, Thm. 15 implies for the stable processff thatff |= tt andff |= ff. Hence, we cannot
define “p |= ¬tt if not p |= tt” for inconsistentp, since¬tt should be equivalent toff. However,
for consistentprocesses and propositional formulas, we can express negation in our¬-less logic.

To show this, we define for consistentp and propositionalφ: p |= ¬φ if ∀p0. p
ǫ
=⇒| p0 =⇒

not p0 |= φ; as well as for formulasφ andψ: φ =||= ψ if ∀p<F. p |= φ ⇐⇒ p |= ψ. Now, the
proof of the following proposition is an easy exercise.
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Proposition 19 (Dualities).
¬tt =||= ff ¬en(a) =||= dis(a) ¬(φ ∧ ψ) =||= ¬φ ∨ ¬ψ

¬ff =||= tt ¬dis(a) =||= en(a) ¬(φ ∨ ψ) =||= ¬φ ∧ ¬ψ

As a consequence, we can specify implications for consistent processes, e.g.,en(a) −→ dis(b)
can be expressed asdis(a) ∨ dis(b). Finally, note that one cannot replace=||= by=RS in Prop. 19
since=RS also relates inconsistent processes.

4. Example

We illustrate the utility of our setting involving mixturesof process-algebraic operators and
temporal-logic operators via a small example. Consider thespecification of a very simple net-
working component. SenderS (cf. Fig. 5) receives messages from a user process on portsend

and passes them on, via portin, to channelC. The specification ofC employs an off-the-shelf
designP (cf. Fig. 5), a generic channel that may lose messages; additionally, the behaviour ofP
is restricted by a constraintψ =df �[in][in](en(out) ∧ dis(in)). Intuitively, ψ ensures that at
most one message may be lost in a row.

φ

send

inS: P:

in

out

τ

τ

:
send send,

out
out

τττ

Figure 5: Some LLTSs that occur in the example.

As an aside and assuming the availability of the standard process-algebraic prefix operator,
ψ could equivalently be specified as�[in][in]out.tt, whereout.tt denotes the LLTS consisting
of an out-transition from an initial state to processtt. Here, prefixing is employed as a com-
pact notation for specifying that only a single action is allowed, which is especially useful (or
even necessary) if the underlying alphabet is large (or infinite). This demonstrates one of the
advantages of mixing operators from process algebras and temporal logics.

The overall specification of our example is nowSpec =df ((P ∧ ψ) ‖{in} S)/in, where/in
is ahiding operatoron actionin, similar to the identically named operator in CSP [13], which
restricts the scope ofin to Spec (cf. [2] for details). Spec is a truly mixedspecification that
conjunctively composes an operational component with a temporal-logic formula, and puts the
result in parallel with another operational component while synchronising on the internal chan-
nelin. The LLTS semantics ofSpec is successively developed in Fig. 6: (a) depicts the LLTS of
[in][in]out.tt; (b) depicts the LLTS ofψ when reduced with respect to=RS (recall that there is a
standard finite-state definition of the�-operator); (c) depicts the LLTS ofC =df P∧ ψ as well as
a simplified,=RS-equivalent version; and (d) depicts the simplified LLTS (omitting inconsistent
states) ofSpec, where label (in) stands for aτ that results from hiding actionin [2].

Assume that the designer wishes to verify thatSpec does not deadlock, i.e., alwayssend
or out is enabled:φ =df �(en(send) ∨ en(out)). To demonstrateSpec |= φ, it is by Thm. 15
sufficient to proveSpec ⊑RS φ. This is easy when considering the LLTSs ofSpec andφ, which
are depicted in Figs. 6(d) and 5. We also know that, whenever we implement the channel de-
sign C = P ∧ ψ by someCi so thatCi ⊑RS C, the implementationImpl =df (Ci ‖{in} S)/in

16



(c)

out
(in)

(in) send

send τ
τ

(d)

out

out

out
in

inin

in

τ

τ
τ τ

in

out

out(e)

send

out

tt

tt

tt

out out in in

outout in in

out

τ τ
ττ

τ τ
ττ

out

out out
inin

out out

in in

τ ττ τ

τ τ
ττ

in

in

Simplified:

in

in

out out

out out

ττ

τ

τ τ

ττ τ τ

ττ
τ

(b)(a)

Figure 6: (a)–(d): Developing the LLTS ofSpec; (e): Possible implementationC3 of C.

satisfiesφ, too. This is becauseImpl ⊑RS Spec by compositionality and Prop. 5(2); thus, by
transitivity,Impl ⊑RS φ. Hence,Impl |= φ by Thm. 15.

Possible implementationsCi of C include the LTSC1 that engages in anin-out-loop,C2 that
behaves as anin-in-out-loop, orC3 depicted in Fig. 6(e); the latter requires that at most one of
each two messages and at most two of five messages are lost. Rather than provingC3 ⊑RS C,
one could establishC3 ⊑RS P andC3 ⊑RS ψ separately, and then inferC3 ⊑RS P ∧ ψ = C by
Prop. 5(2).

5. Modal Logic LTS

If one wishes to write an LLTS specification that permits a large number of ready sets initially,
one needs to insert aτ-branch for each single one of these ready sets. This can be seen, e.g., in
Fig. 2 and leads to a cluttered and sometimes difficult to comprehend presentation of the desired
specification. A more compact representation can, however,be achieved by employingmay- and
must-transitions, as inspired by themodal transition systemsof Larsen [7].

In this section, we first introducemodal LLTSas a shorthand notation for LLTS, and apply
them to the embedding of temporal logic into our setting and to our example above (cf. Sec. 5.1).
This paves the way for comparing our setting to the one of Larsen, for which we adapt ready
simulation to modal LLTS and show that the resultingmodal ready simulationis finer than ready
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simulation but coarser than Larsen’smodal refinement[7] (cf. Sec. 5.2). We also provide some
intuitive insights behindmay and must in our setting (cf. Sec. 5.3), and discuss conjunction
operators in modal transition systems in the light of our work (cf. Sec. 5.4).

5.1. Definition, Expansion& Application

In modal LLTS we distinguish required transitionsp
α
−→ p′, calledmust-transitions, and

allowed transitionsp
α

99K p′, calledmay-transitions. We demandsyntactic consistency, i.e.,
every required transition must also be allowed. In the following, we writep 6

α
99K for ∄p′. p

α
99K p′.

Analogously,p 6
α
−→ if ∄p′. p

α
−→ p′; note that the absence of some must-transitionp

α
−→ p′ does

not preclude the existence of the may-transitionp
α

99K p′.

Definition 20 (Modal LLTS). Consider a quadruple〈P,−→, 99K, F〉 such that (i) P is a set of
states or processes, (ii)−→⊆ 99K⊆ P×Aτ×P, i.e., every must-transition is also a may-transition,
(iii) 99K ∩ (P× {τ} × P) ⊆−→, i.e., everyτ-transition is a may-transitionanda must-transition,
and (iv) F⊆ P.

We defineImay(p) =df {α ∈ Aτ | p
α

99K} for modal LLTS and, analogously, writeImust(p)

for {α ∈ Aτ | p
α
−→}; obviously,Imust(p) ⊆ Imay(p). In addition, we define

α
=⇒| as before but

based on the may-transition relation99K.
Then, the above quadruple〈P,−→, 99K, F〉 is amodal LLTS if it satisfies the following three

conditions:

(τ-purity) ∀p ∈ P. p
τ
−→ =⇒ ∀a ∈ A. p 6

a
99K;

(mLTS1) p ∈ F if ∃α∈Imay(p). (p
α
−→ and∀p′ ∈ P. p

α
−→ p′ =⇒ p′ ∈ F) or

(p 6
α
−→ and∃p′ ∈ F. p

α
99K p′);

(mLTS2) p cannot stabilise (i.e.,∄p′ ∈ P. p
ǫ
=⇒| p′) =⇒ p ∈ F.

In drawings of examples later on, we let an ordinary arrow represent a may-transitionand a
must-transition; may-transitions that are not also must-transitions are drawn as dashed arrows.
Analogous to [7], syntactic consistency is formalised by requiring −→⊆ 99K. The details of
Cond. (mLTS1) are justified by the following expansion of modal LLTS to LLTS (cf. Def. 21
and Remark 24), which explains modal LLTS as a shorthand notation for LLTS. Further insights
regarding the intuition ofmayandmustin modal LLTS will be offered in Sec. 5.3.

The idea behind the expansion of modal LLTS to LLTS is to replace each processp by
a disjunction, where each disjunct captures all must-transitions and some may-transitions ofp
such that each collection of may-transitions that are not also must-transitions is represented. This
clearly reflects the intuition ofmay- andmust-transitions.

Definition 21 (Expansion). Let P be a modal LLTS and, for p∈ P, let MO(p) denote the set

{p
α

99K p′ | p 6
α
−→ p′} of all may-onlytransitions of p, i.e., all outgoing may-transitions of p that

are not also must-transitions. Note that(p
α

99K p′) ∈ MO(p) impliesα , τ by (iii) in Def. 20.
To construct the expansion LLTŜP of P, we (i) add to P processes of the form(p,M), for

each p∈ P and M ⊆ MO(p), (ii) defineF̂ =df F ∪ {(p,M) ∈ P̂ | p ∈ F}, and (iii) replace the
outgoing transitions of each process p∈ P by the following new transitions:

• p
τ
−→ (p,M) for M ⊆ MO(p), and

• (p,M)
α
−→ p′ for (p

α
99K p′) ∈ M or p

α
−→ p′.
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Before presenting an example of such an expansion, we brieflyremark on an alternative
definition where we replace a processp ∈ P and its outgoing transitions only ifMO(p) , ∅
and, hence,Imay(p) , ∅. The resulting expansion is=RS-equivalent to the one obtained by
applying Def. 21. The advantage of this alternative definition is a practical one, namely that
the resulting expansion is smaller. Indeed, the expansion is P itself if may- and must-transitions
coincide, i.e., LLTSs are preserved. In contrast, every processp where all outgoing transitions are

must-transitions, is split intop
τ
−→ (p, ∅) in our definition. The disadvantage of the alternative

definition concerns proofs requiring the expansion construction. This is because there would be
two cases to consider for each processp ∈ P, which can lead to many subcases in proofs in
which one has to compare several may-transitions. For this reason we prefer Def. 21.

τ
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Figure 7: Expansion example: (a) Modal LLTSP; (b) Expansion LLTSP̂; (c) Alternative expansion LLTS.

We now turn to an example of our expansion construction. Consider the modal LLTSP in
Fig. 7(a). Its expansion̂P is depicted in Fig. 7(b), where we represent, in the states (q,M), the

elementsq
a

99K 1 andq
b

99K 2 of MO(q) by 1 and 2. For completeness, the result of applying our
alternative expansion is depicted in Fig. 7(c). This example also shows that it is convenient that
all τ-transitions are must-transitions: if the initial part ofP were as shown in Fig. 8(a), then this
would be translated to Fig. 8(b) which just representsq∨ r as well, but in a more complex way.

(a) (b)

q

pp

r

q r

τ τ τ τ

ττ τ

Figure 8: Illustration that demonstrates the convenience of the fact that allτ-transitions are must-transitions.
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In addition, observe that, with our interpretation of an instable state as a disjunction, it is suf-
ficient to implement one of its outgoingτ-(must-)transitions. Thus, these transitions correspond
to onedisjunctive must-transitionas in [14]. Before proving that the expansion of a modal LLTS
is indeed an LLTS, we first state an easy lemma which will be used several times in this section
and is proved in the appendix:

Lemma 22. Let P be a modal LLTS.

1. If p
ǫ
=⇒| p′ in P, then p

ǫ
=⇒| (p′,M′) in P̂ whenever(p′,M′) ∈ P̂.

2. If p
ǫ
=⇒| (p′,M′) in P̂, then p

ǫ
=⇒| p′ in P.

The details of Def. 20, and in particular of Cond. (mLTS1) therein, are tuned to make the
expansion̂P of P well-defined, i.e.,̂P is an LLTS without the need for any backward propagation.

Proposition 23 (Well-Definedness).Given a modal LLTS P, its expansionP̂ is an LLTS.

P. We check the requirements of Def. 1. Firstly, allp ∈ P are instable inP̂; all pro-
cesses (p,M) are stable ifp is stable, and they only haveτ-transitions ifp is instable.

Regarding Cond. (LTS1) andp ∈ P, we have thatp is in F ⊆ F̂ or all (p,M) < F̂. For

processes of the form (p,M) we assume∃α ∈ I((p,M))∀p′. (p,M)
α
−→ p′ =⇒ p′ ∈ F̂ (i.e.,

p′ ∈ F) and distinguish the following cases:

p 6
α
−→: Then,∃(p

α
99K p′) ∈ M by α ∈ I((p,M)), and we have (p,M)

α
−→ p′. Hence,p′ ∈ F̂

by assumption. Thus, the second disjunct of Cond. (mLTS1) holds forα, i.e., p ∈ F and
(p,M) ∈ F̂.

p
α
−→ p′: Here we have∀p′. p

α
−→ p′ =⇒ (p,M)

α
−→ p′ by construction ofP̂, andp′ ∈ F

by assumption. Thus, the first disjunct of Cond. (mLTS1) holds forα, whencep ∈ F and
(p,M) ∈ F̂.

We now turn our attention to establishing Cond. (LTS2) of Def. 1. If p < F̂ then p < F;
hence,p can stabilise inP. Therefore,p can also stabilise in̂P by Lemma 22(1). If (p,M) < F̂,
i.e., p < F, then: (a)p and (p,M) are stable and we are done; or (b)p is not stable (i.e.,α = τ),

M = ∅ (since allτ-transitions are must-transitions), andp
τ
−→ (p, ∅). Due top < F, we obtain in

Case (b) thatp can stabilise with somep
ǫ
=⇒| p′. Now, by Lemma 22(1),p

ǫ
=⇒| (p′, ∅) in P̂; this

involvesp
τ
−→ (p, ∅), i.e., (p, ∅)

ǫ
=⇒| (p′, ∅). �

Remark 24. For the interested reader, we now explain the details of Cond. (mLTS1) in Def. 20.
First consider Fig. 9(a) and part of its expansion in Fig. 9(b), and contemplate the following sim-
ple adaptation of Cond. (LTS1): p∈ F if ∀p′. p

a
99K p′ =⇒ p′ ∈ F. Then, p< F is justified by

the may-transition, but the disjunct(p, {}) of p in P̂ must be inF̂. This is a backward propagation
in the construction of̂P, which we want to avoid. The problem arises due to(p, {}) which repre-

sents all must-transitions; therefore we require p∈ F if ∃α ∈ Imay(p). p
α
−→ ∧ ∀p′. p

α
−→ p′

=⇒ p′ ∈ F (cf. the first disjunct in Cond. (mLTS1)). Thus, ifα ∈ Imust(p) and p< F, then there

is some p′ < F with p
α
−→ p′, and all disjuncts of p in̂P also have anα-transition to p′.

For the remaining caseα ∈ Imay(p) \ Imust(p), consider Fig. 9(c) and part of its expansion
in Fig. 9(d). In this case, we have the same problem with the second disjunct, i.e., just one
α-may-transition to a process in F should force p∈ F. This justifies the second disjunct in
Cond. (mLTS1).
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Figure 9: Illustrating the motivation behind Cond. (mLTS1).
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Figure 10: (a)–(d) Embedding of temporal-logic formulas into modal LLTS; (e) Compact representation of Fig. 6(b).

As an application of modal LLTS we show in Fig. 10 how the LLTSsfor the formulastt,
en(a), dis(a), and [a]φ (cf. Fig. 2) can be represented more compactly as modal LLTSs, where
‘Act’ stands forA. Compared to Fig. 2 we can do without theτ-transitions selecting the ready
sets; note that there are exponentially many such transitions for finiteA. In addition and as a
concrete example, we give a compact representation of Fig. 6(b) in Fig. 10(e). This modal LLTS
requires only 3 instead of 11 processes and only 5 instead of 17 transitions, and shows much
more clearly that any implementation of this specification must exhibit anout action after two
in actions.

5.2. Ready Simulation& Modalities

Having defined modal LLTS as a shorthand notation for LLTS, itwould be interesting to de-
fine ready simulation directly on modal LLTS. In this sectionwe present a very natural candidate
for such a variation. Surprisingly, thismodal ready simulationturns out to be more strict than
ready simulation which, however, still gives us a sound method for checking on modal LLTSs
whether ready simulation holds for the LLTSs they stand for.

Another interesting question, given that we employ may- andmust-transitions as a shorthand
notation, is how our approach is related to the original refinement preorder, known asmodal
refinement, of modal transition systems [7]. To answer this question, we employ the modal
ready simulation just mentioned and show that modal refinement implies modal ready simulation
and thus ready simulation. For this comparison only, we willrestrict ourselves to modal LLTS
without τ actions, sinceτ has a special interpretation (related to disjunction) in our approach;
hence, we identify modal transition systems withτ-free modal LLTS for whichF = ∅. It is not
surprising that the reverse implication, i.e., ready simulation implies modal refinement, does not
hold since modal refinement is bisimulation-based.

We first introduce our notion ofmodal ready simulation. Recall that
α
=⇒| is based on

may-transitions, and note that
ǫ
=⇒| could equivalently be based on must-transitions since all

τ-transitions are may-andmust-transitions.
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Definition 25 (Modal Ready Simulation). Let 〈P,−→P, 99KP, FP〉 and 〈Q,−→Q, 99KQ, FQ〉 be
two modal LLTSs. RelationR ⊆ P × Q is a modal stable ready simulation relation, or modal
stable rs-relationfor short, if the following conditions hold, for any〈p, q〉 ∈ R and a∈ A:

(mRS1) p, q stable (mRS3) p
a
=⇒| p′ =⇒ ∃q′. q

a
=⇒|q′ and〈p′, q′〉 ∈ R

(mRS2) p < FP =⇒ q < FQ (mRS4) p < FP =⇒ Imay(p) ⊆ Imay(q) ∧ Imust(q) ⊆ Imust(p)

We write p⊏
∼mRS

q if there exists a modal stable rs-relationR such that〈p, q〉 ∈ R. Further,

p is modal ready simulatedby q, in symbols p⊑mRS q, if ∀p′. p
ǫ
=⇒| p′ =⇒ ∃q′. q

ǫ
=⇒|q′ and

p′ ⊏
∼mRS

q′.

Modal ready simulation has textually the same definition as ready simulation (cf. Def. 4), ex-
cept for Cond. (RS4). Conds. (mRS1) and (mRS2) do not deal with transitions and thus stay
unchanged. For Conds. (mRS3) and (mRS4), consider a modal LLTS P and somep ∈ P. Each

stepp
a
=⇒| p′ (based on may-transitions) is a possible behaviour ofp, so it must be matched as

for LLTS. Regarding Cond. (mRS4),p represents all ready sets betweenImust(p) andImay(p),
whence each of them must lie betweenImust(q) andImay(q) for a matchingq. Observe that the
inclusionImay(p) ⊆ Imay(q) already follows from Cond. (mRS3), as in Def. 4.

While Conds. (mRS1)–(mRS4) are the naturally expected ones, it is not clear that they – by
themselves – treat the subtleties of may- and must-transitions in sufficient detail. Prop. 27 below
shows, however, that this is indeed the case.

Remark 26. The above definition of modal ready simulation somewhat reminds us of De Alfaro
and Henzinger’salternating simulationfor interface automata[15]. Alternating simulation is
also a simulation, with additional requirements for initial actions. Their setting is, however,
quite different from ours as it relies on an explicit distinction of input and output actions. Still,
one merit of modal ready simulation is that it makes the vagueconceptual similarity between our
approach and interface automata more precise.

The additional requirements of alternating simulation arethat an implementation p allows
all inputs of a matching q (corresponding toImust(q) ⊆ Imust(p)), while it may only perform
outputs allowed by q (corresponding toImay(p) ⊆ Imay(q)). Of course, an important techni-
cal difference is that inputs and outputs are disjoint in the settingof interface automata, while
Imust(r) ⊆ Imay(r) for all processes r in our setting.

Another version of alternating refinement [16] (where simulation works one way for inputs
and the other way for outputs) is very close to the so-calledmodal refinement[7] (see Def. 29);
this relation has been worked out in [17].

We now prove that modal ready simulation on modal LLTS is finerthan ready simulation on
their LLTS expansions:

Proposition 27 (Expansion Preserves Refinement).Let P and Q be modal LLTSs, and p∈ P
and q∈ Q. Then, p⊑mRSq wrt. P and Q=⇒ p ⊑RS q wrt. P̂ andQ̂.

P. We first show the following statement. LetR ⊆ P× Q be a modal stable rs-relation, and
defineR̂ ⊆ P̂× Q̂ to consist of all pairs〈(p,M), (q,N)〉 where

• 〈p, q〉 ∈ R andM ⊆ MO(p);

22



• N is the set of all transitionsq
a

99K q′ in MO(q) such that there existp′, p′′, q′′ with

(i) (p
a

99K p′) ∈ M or p
a
−→ p′, (ii) p

a
99K p′

ǫ
=⇒| p′′, (iii) q

a
99K q′

ǫ
=⇒| q′′, and

(iv) 〈p′′, q′′〉 ∈ R.

The latter item ensures that (q,N) allows exactly the steps matching some (p,M)
a
=⇒| . Now, we

claim thatR̂ is a stable rs-relation. For the proof, we consider some arbitrary〈(p,M), (q,N)〉 ∈ R̂
anda ∈ A, and check the conditions stated in Def. 4:

(RS1) 〈p, q〉 ∈ R implies, by Cond. (mRS1), thatp andq are stable. Hence, processes (p,M)
and (q,N) are stable.

(RS2) (p,M) < F̂ implies, by the construction of̂P, thatp < F. Thus,q < F by Cond. (mRS2)
and, hence, (q,N) < F̂.

(RS3) Let (p,M)
a
=⇒| (p′′,M′′); hence, there is somep′ with (p

a
99K p′) ∈ M or p

a
−→ p′, and

(p,M)
a
−→ p′

ǫ
=⇒| (p′′,M′′). Therefore,p

a
99K p′

ǫ
=⇒| p′′ in P (cf. Lemma 22(2)). By

Cond. (mRS3), there existq′, q′′ with q
a

99K q′
ǫ
=⇒|q′′ and〈p′′, q′′〉 ∈ R. Thus, (q

a
99K

q′) ∈ N or q
a
−→ q′ by the definition ofR̂. Moreover, (q,N)

a
−→ q′ by the construction

of Q̂. Since〈p′′, q′′〉 ∈ R, there is a uniqueN′′ with 〈(p′′,M′′), (q′′,N′′)〉 ∈ R̂, and we have

q′
ǫ
=⇒| (q′′,N′′) in P̂ by Lemma 22(1). Together with (q,N)

a
−→ q′, this finishes this case.

(RS4) Let (p,M) < F̂. The inclusionI((p,M)) ⊆ I((q,N)) is clear from Cond. (RS3) above.

Now let a ∈ I((q,N)), i.e., there exists aq′ such that (q
a

99K q′) ∈ N or q
a
−→ q′. In the

case (q
a

99K q′) ∈ N, we have somep′ with (p
a

99K p′) ∈ M or p
a
−→ p′ by the definition

of R̂, and thus (p,M)
a
−→ p′ in P̂. In the caseq

a
−→ q′, we havea ∈ Imust(q) ⊆ Imust(p)

by Cond. (mRS4), andImust(p) ⊆ I((p,M)) by the definition ofP̂.

We now prove the statement of the proposition and assumep ⊑mRS q. Let p
ǫ
=⇒| (p′,M′) in P̂,

i.e., p
ǫ
=⇒| p′ in P by Lemma 22(2). Then, there exists aq′ with q

ǫ
=⇒| q′ and p′ ⊏

∼mRS
q′ due

to some modal stable rs-relationR. ConsiderR̂ as constructed above and theN′ such that
〈(p′,M′), (q′,N′)〉 ∈ R̂. Sinceq

ǫ
=⇒|q′ in Q we getq

ǫ
=⇒| (q′,N′) in Q̂ by Lemma 22(1), which

finishes the proof. �
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Figure 11: Counterexample: The inverse implication regarding Prop. 27 does not hold.
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In the following, we also writep ⊑RS q for processesp andq in modal LLTSsP andQ, respec-
tively, if p ⊑RS q wrt. P̂ and Q̂. As an aside, also note that⊑mRS and⊑RS coincide for those
modal LLTS for which each may-transition is also a must-transition, i.e., for ordinary LLTS.

The reverse implication regarding Prop. 27 does, however, not hold as is testified by the coun-

terexample depicted in Fig. 11. Observe that, inP̂ andQ̂, the steps
a
=⇒| choose between the two

branches. This is not the case inP. Technically, when trying to provep ⊑mRS q in P andQ, one
must matchp′ with q′ or q′′. Neither of these matches is possible sincec ∈ Imay(p′) \ Imay(q′)
andc ∈ Imust(q′′) \ Imust(p′). In order to give a characterisation for ready simulation on the
level of modal LLTS, it seems one would have to relatep′ with the set{q′, q′′}. Since this sug-
gests that a characterisation will necessarily be complicated and less appealing for applications,
we do not investigate this issue further here.

Lately, some researchers have shown interest indeterministicmodal transition systems (see,
e.g., [18]). Intuitively, determinism of a modal transition system means determinism of its may-
transition relation, and thus also of its must-transition relation. Adapting this notion to modal
LLTS, we say thatP is deterministic if it is deterministic with respect to the transition rela-

tion =⇒| P. This means that each
a
=⇒| P step from some processp ∈ P leads to the same pro-

cessq ∈ P, so we can assume that there is a direct transitionp
a

99K q. In particular,P has no
τ-transitions, and allp ∈ P are stable. While the reverse implication regarding Prop. 27 is not
valid in general as seen above, we now prove that it holds for deterministic modal LLTS.

Proposition 28 (Reverse of Prop. 27).Let P,Q bedeterministicmodal LLTSs, and p∈ P and
q ∈ Q. Then, p⊑RS q wrt. P̂ andQ̂ =⇒ p ⊑mRSq wrt. P and Q.

P. In the sequel we writeI(M), whereM ⊆ MO(p) and p ∈ P, for the action set{a ∈

A | ∃p′. (p
a

99K p′) ∈ M}. We also employ the notationI(N) analogously forN ⊆ MO(q) and
q ∈ Q. Given deterministic modal LLTSsP,Q we first show that

R =df {〈p, q〉 ⊆ P× Q | ∃N ⊆ MO(q).I(MO(p)) ⊆ I(N) and (p,MO(p)) ⊏
∼RS

(q,N)}

is a modal stable rs-relation. To this end, consider some〈p, q〉 ∈ R, i.e., I((p,MO(p))) ⊆
I((q,N)) for a suitableN ∈ MO(q), anda ∈ A. We check the conditions of Def. 25:

(mRS1) SinceP,Q are deterministic, we have thatp andq are stable.

(mRS2) p < F implies (p,MO(p)) < F, by the construction of̂P. Thus, (q,N) < F̂ by
Cond. (RS2) and, hence,q < F.

(mRS3) Let p
a
=⇒| p′ for somep′, i.e., p

a
99K p′ sinceP is deterministic. By expansion, we

have both (p,MO(p))
a
−→ p′

τ
−→ (p′,MO(p′)) and (p,MO(p))

a
−→ p′

τ
−→ (p′, ∅),

whence (p,MO(p))
a
=⇒| (p′,MO(p′)) and (p,MO(p))

a
=⇒| (p′, ∅) sincep′ < F. Exploiting

Cond. (RS3), there existq′,N′ andq′′,N′′ such that (q,N)
a
=⇒| (q′,N′), (q,N)

a
=⇒| (q′′,N′′),

(p′,MO(p′)) ⊏
∼RS

(q′,N′) and (p′, ∅) ⊏
∼RS

(q′′,N′′). By expansion again,q
a

99K q′ and

q
a

99K q′′, which meansq′ = q′′ andq
a
=⇒|q′ sinceQ is deterministic. It remains for us to

establishI(MO(p′)) ⊆ I(N′) to be able to conclude〈p′, q′〉 ∈ R, as desired. Exploiting
Cond. (RS4) and consideringp′ < F, we haveImust(p′)∪I(MO(p′)) = I((p′,MO(p′))) =
I((q′,N′)) = Imust(q′) ∪ I(N′), as well asImust(p′) = I((p′, ∅)) = I((q′,N′′)) =
Imust(q′)∪I(N′′). Hence,Imust(p′) ⊇ Imust(q′) and, becauseImust(p′)∩I(MO(p′)) = ∅
andImust(q′) ∩ I(N′) = ∅ by the definition of may-only transitions,I(MO(p′)) ⊆ I(N′).
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(mRS4) p < F implies (p,MO(p)) < F, which in turn impliesI((p,MO(p))) = I((q,N)) by
Cond. (RS4). To showImay(p) ⊆ Imay(q) we leta ∈ Imay(p), i.e., a ∈ I((p,MO(p)))
by expansion. Hence,a ∈ I((q,N)), which impliesa ∈ Imay(q). For establishing the
inclusionImust(q) ⊆ Imust(p), let a ∈ Imust(q) so thata ∈ I((q,N)) by expansion.
Therefore,a < I(N) anda ∈ I((p,MO(p))). SinceI(MO(p)) ⊆ I(N) and thusa < MO(p),
this proves the existence of ana-must-transition ofp, i.e.,a ∈ Imust(p).

Using this result we can now establishp ⊑mRS q. Sincep, q are stable by assumption, it is suffi-

cient to prove〈p, q〉 ∈ R. To do so, considerp
τ
−→ (p,MO(p)) andp

τ
−→ (p, ∅) in the expansion

of P. Thus, by Cond. (RS3) and expansion,q
τ
−→ (q,N), q

τ
−→ (q,N′), (p,MO(p)) ⊏

∼RS
(q,N)

and (p, ∅) ⊏
∼RS

(q,N′), for someN,N′ ⊆ MO(q). By reasoning analogously as in (mRS3) above,
we obtainI(MO(p)) ⊆ I(N), which finishes the proof. �

We end this section (Sec. 5.2) by proving that modal refinement implies modal ready simulation
and thus, by Prop. 27, it also implies ready simulation. For this result we only consider modal
transition systems withoutτ, as announced above. Thus, a standard modal transition system in
the sense of Larsen [7] corresponds in our setting to aτ-free modal LLTS withF = ∅.

Definition 29 (Modal Refinement [7]). A modal refinement relationR ⊆ P× Q satisfies for all
〈p, q〉 ∈ R and a∈ A:

1. p
a

99K p′ implies∃q′. q
a

99K q′ and〈p′, q′〉 ∈ R;

2. q
a
−→ q′ implies∃p′. p

a
−→ p′ and〈p′, q′〉 ∈ R.

We write p≤L q if 〈p, q〉 ∈ R for a modal refinement relationR, and call≤L modal refinement.

It is easy to see that such a relationR is also a modal stable rs-relation: Cond. (mRS1) and Cond.
(mRS2) hold trivially; Cond. (mRS3) reduces to Cond. (1) above; for Cond. (mRS4) we recall
thatImay(p) ⊆ Imay(q) by Cond. (mRS3), andImust(q) ⊆ Imust(p) by Cond. (2) above. Hence,
we have the following proposition:

Proposition 30 (Modal Refinement Refines (Modal) Ready Simulation). p ≤L q implies
p ⊑mRSq and, hence, p≤L q also implies p⊑RS q.

a a a

b

qp

Figure 12: Counterexample: Ready simulation and modal ready simulation do not refine modal refinement.

It is not surprising that the reverse implication regardingthis proposition fails in general, since
modal refinement is of bisimulation-type. A counterexampleis depicted in Fig. 12, for which
p ⊑mRS q and p ⊑RS q hold, but notp ≤L q. However, the reverse implication is true for
deterministicmodal LLTS, as is not difficult to check.
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Figure 13: Example illustrating action-modality.

5.3. May&Must in Modal LLTS, Intuitively

We have set up modal LLTS in such a way that we can treat generalmodal transition systems
as we have done above. However, this generality allows us to write down some modal LLTS
whose meaning regardingmayandmustis not quite intuitive. The situation arises when a process
possesses severala-transitions for some actiona, at least one of which is a must-transition.
Then, anya-may-transition of the process has amustcharacter, as is illustrated by the example
processesp, q and r in Fig. 13: somewhat surprisingly,r modal rs-refinesp since it modal
rs-refinesq. Indeed, the specificationp is more clearly expressed byq.

As suggested by this example, it is sufficient to focus our attention on a subset of modal LLTS
wheremayandmustdo not depend on single transitions but only on each process and action. In
other words, we can restrict ourselves to what we callaction-modalLLTS:

Definition 31 (Action-Modal LLTS). A modal LLTS P is anaction-modal LLTSif, for all pro-

cesses p, p′ ∈ P and a∈ Imust(p), we have p
a

99K p′ implies p
a
−→ p′.

To the best of our knowledge, the subclass of action-modal LLTS within modal transition systems
(i.e., τ-free LLTS with F = ∅) has not been considered in the literature before. The following
theorem, whose proof again relies on our notion of modal ready simulation, shows that the re-
striction imposed by action-modal LLTS does not affect our setting’s expressiveness:

Theorem 32 (Generality of Action-Modal LLTS). For each modal LLTS P, there exists an
action-modal LLTSP and a bijection· : P → P such that, for all p∈ P, p =mRS p and,

thus, p=RS p wrt. P̂ andP̂.

P. Given a modal LLTSP, we construct the action-modal LLTSP as follows:
• P =df {p | p ∈ P};

• −→P =df {p
α
−→ p′ | p

α
99K p′ andα ∈ Imust(p)} (containing−→P);

• 99KP =df {p
α

99K p′ | p
α

99K p′};
• F =df {p | p ∈ F}.

Let R =df {〈p, p〉 | p ∈ P is stable}. We show thatR and its inverseR−1 are modal stable rs-
relations:

(mRS1) & (mRS2) Both these conditions are straightforward to establish.

(mRS3) Since 99KP and 99KP — as well asF and F — are essentially the same, we have

p
α
=⇒| p′ if and only if p

α
=⇒| p′ for all p, p′ ∈ P.
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(mRS4) Analogously,Imay(p) = Imay(p) for all p ∈ P. Furthermore,p
α
−→P only if α ∈

Imust(p), i.e.,Imust(p) ⊆ Imust(p). Conversely,α ∈ Imust(p) implies∃p′. p
α
−→P p′;

hence,p
α
−→P p′, i.e.,α ∈ Imust(p).

Now the result follows sinceP andP are isomorphic on may-transitions and, in particular, on
τ-may-transitions. �

5.4. Conjunction in Modal Transition Systems

A conjunction operator (and also a disjunction operator) has been defined for modal tran-
sition systems by Larsen in [7]. To be able to accommodate conjunction, Larsen generalised
modal transition systems to deal with syntactic inconsistency, whereby must-transitions do not
necessarily also have to be may-transitions. He then definedconjunction such that it gives the
greatest lower bound with respect to≤L (with the same definition as above, see Def. 29), thus
satisfying one of our benchmark results (cf. Prop. 5(2)). Ofcourse, this works for the stricter≤L

which is not justified by a full-abstractness result as⊑RS is [2] (cf. Thm. 6).

b

p q

1 3

P Q

2

p

1

a a

P

q

3

a a

Q

1 3

2

a a a

b

Figure 14: Example demonstrating the difficulty of understanding Larsen’s conjunction operationally.

It must be mentioned that, although≤L has a very elegant definition, the result of Larsen’s
conjunction can be difficult to understand operationally since inconsistencies (i) are not directly
related to unsatisfiability and (ii) are not “first-class citizens” as in our setting. To illustrate
this we consider the example in Fig. 14, where ordinary arcs represent must-transitions without
representing a may-transition. Here,q ≤L p due to the modal refinement relation{〈q, p〉, 〈3, 1〉},
so we must haveq ≤L p∧ q. For obtaining this result, the must-transitions ofp∧ q are matched

by q
a
−→ 3, while the may-transitionq

a
99K 3 is matched by the separatep∧q

a
99K 1∧3, which is

surprising. Thus, althoughp∧ q “is syntactically inconsistent”, it is refined by the consistentq.
In line with the modal refinement developed in [19],q is even an implementation since99K

and−→ coincide. Furthermore, it is not very intuitive from the graphical presentation ofp ∧ q
thatq ≤L p∧ q while p ≤L p∧ q fails. Finally, one cannot remove states or arcs to makep∧ q
consistent without changing its meaning: we would have to remove both must-transitions, but
thenp∧ q ≤L q — which follows from∧ being a lower bound — would fail since there would

be no match forq
a
−→ 3 any more.

This shortcoming has been avoided by Larsen et al. in [20] andby Raclet in [21]. Larsen
et al. have limited conjunctive composition to so-calledindependentspecifications which avoid
inconsistencies, while Raclet has restricted his setting to deterministicmodal transition systems.
Raclet, but not Larsen et al., covers the example above, where p∧ q yields the desired resultq.
When expandingp∧ q to LLTS, the resulting LLTS is also exactly the expansion ofq.
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6. Related Work

Related work has often avoided mixing operational and logicstyles of specification by trans-
lating one style into the other, although the use of combinedstyles has also been described by
others, e.g., [22]. Logic content may be translated into operational content, such as in Kurshan’s
work onω-automata[23] which includes synchronous and asynchronous composition operators
and employs trace inclusion for refinement. However, trace inclusion is insensitive to deadlock
and is thus inadequate in the presence of concurrency. Recent research oninterface theoriesby
Raclet et al. [24] mixes conjunction and synchronous product, which also considers some version
of ready semantics in [21]. In contrast to our work, however,their line of research utilisesde-
terministicmodal transition systems, is also not sensitive to deadlock, and does not substantiate
refinement via a full-abstraction result.

Dually, operational content may be translated into logic formulas, as is implicitly done by
Lamport in [25] where logic implication serves as refinementrelation [26]. A similar approach
is followed in Hoare and He’s UTP [27], theUnifying Theories of Programming, where a trans-
lation of the process algebra CSP [13] into logic formulas isindicated. Thus, conjunction is, e.g.,
applicable to processesa anda + b (i.e., thep andr in Fig. 1(a)), which yields a process that
can neither refuseb in the sense of failure semantics, nor can it performb. Hence,a∧ (a+ b) is
an inconsistent process, but it is not treated as logically false as in our work. It seems that this
inconsistency can be repaired in [27] by adding further choices (e.g., as in (a∧(a+b))+b= a+b),
which we regard as undesirable.

A seminal step towards a mixed setting was taken by Olderog in[28] where process-algebraic
constructs are combined withtrace formulas, and where failure semantics underlies refinement.
In this approach, trace formulas can serve as processes, butnot vice versa. Thus, and in contrast
to our present work, [28] does not support the unrestricted mixing of operational and logic speci-
fication styles, which can be very useful as, e.g., demonstrated by our example in Sec. 4. In [29],
a mixing of process-algebraic and temporal-logic operators is advocated by Guerra and Costa,
too: a simple process algebra is extended with an operator toexpress that eventually some action
occurs (see also [30]). Again, the semantics is based on traces and is thus not deadlock-sensitive.
However, the ideas of Guerra and Costa may help one to extend our approach to liveness proper-
ties, as may those in [31].

In the context of a proof methodology based on modal transition systems, the process alge-
bra CCS [32] has been extended by Larsen and others with may- and must-modalities and with a
compositional conjunction operator [20]. While conjunction is – as mentioned above – only de-
fined onindependentprocesses, parallel composition and conjunction can be mixed more freely
than in [28]; in particular, conjunction is shown to distribute over parallel composition. Larsen
et al. also employ a typical pattern of modal transition systems within their proof methodology
that corresponds to simpleAG formulas in the temporal logic CTL [33]; however, an algebraic
theory of mixing operational and (temporal-)logic operators is not considered in [20].

We also mention the work of Fecher and Grabe [34], where readysimulation is used as im-
plementation relation and where a specific satisfaction fortemporal-logic formulas is defined
similar to our approach. In [34], whenever a process satisfies a formula, each implementation of
the process satisfies the formula; however, [34] does not allow the free mixing of operators. An-
other consideration of logics in process algebra which does, however, not result in mixing logic
and process-algebraic operators, involvesconditionsin if-then-else constructs; see, e.g., [35].
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7. Conclusions & Future Work

This article embedded a temporal logic for specifying safety properties into the ready-sim-
ulation-equipped setting of Logic Labelled Transition Systems [2] (LLTS). The chosen logic was
a branching-time logic that allows one to specify properties regarding the enabledness of actions,
using standard temporal operators such asalwaysandunless(weak until), which were shown to
be compositional for ready simulation. The embedding is conservative in that ready simulation,
when restricted to pairs of processes and temporal formulas, coincides with the logic’s satis-
faction relation. Moreover, ready simulation, when restricted to formulas, is entailment. The
extended setting of LLTS is unique in the literature in that it lends itself tofreelymixing opera-
tional and temporal-logic styles of specification, with ready simulation facilitatingcompositional
refinement and model checking.

Regarding future work, we wish to re-phrase our setting in the classic process-algebraic style
and to study axiomatisations of ready simulation. In addition, LLTS should be extended so as
to be able to express liveness, too. This is, however, a non-trivial task as can be seen when
considering the eventuality operator♦ in temporal logics. We would definep |= ♦φ if, for all

maximalrunsp
ǫ
=⇒| p0

a1
=⇒| p1

a2
=⇒| · · · (whereai ∈ A) either ending in somepn with ∀α ∈ Aτ.

pn 6
α
−→ or being infinite, there exists some processpk with pk |= φ. Then, we would have to find

a suitable LLTS for extending the compatibility theorem, Thm. 15 above.
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Figure 15: Examples demonstrating the difficulty of dealing with liveness in our setting.

We illustrate the problem of such an extension by takingA = {a, b} and considering the
formula ♦en(a). This example is particularly simple since we only have ready set{b} before
reachinga. In the spirit of LTL [33], we could understand♦en(a) as a disjunction over allb-
sequences followed by ana, i.e., we would encode♦en(a) as the LLTS depicted in Fig. 15(a).
But, for the processp shown in Fig. 15(b), this encoding cannot ready simulatep although
p |= ♦en(a), i.e., compatibility would be violated. The reason is thatthe encoding must initially
choose a natural numberk such that actiona is enabled afterexactly kactionsb. To improve our
encoding, we could addb-transitions in such a way that the decision when actiona occurs can
be postponed; see processq in Fig. 15(c). But, again, processr in Fig. 15(d), withq being the
process in Fig. 15(c), satisfies♦en(a) while r 6⊑RS q. Here,q must decide for a numberk such
that actiona is enabled afterat most kactionsb (and at least one actionb), while r can postpone
this decision. Therefore, it seems that we must enrich our LLTSs with aBüchi-type acceptance
conditionto deal with liveness. However, it is not clear to us how to handle Büchi states in a
simulation setting satisfactorily, e.g., so that a full-abstraction result (cf. Thm. 6) can be obtained.
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Appendix A. Additional Proofs

For the sake of completeness, this section contains the proofs of the lemmas stated in the
main body of the article.

Appendix A.1. Proof of Lemma 14

P. We need to check Conds. (W1)–(W4) of�-witness.

(W1) If ~q ∈W1, then~p < F�P, which impliespi < FP for all i. Hence,qi < FQ by pi ⊏
∼RS

qi , for

all i. If ~q ∈W2, thenqi
ǫ
=⇒| , for all i, and thusqi < FQ.

(W2) If ~q ∈ W1 stable, thenqi andq j are stable for anyi, j and, by the above,qi , q j < FQ.
By pi ⊏

∼RS
qi and p j ⊏

∼RS
q j , we obtainI(qi) = I(pi) = I(p j) = I(q j), where the second

equality holds due to~p < F�P.

If ~q ∈W2 stable, then~q ∈W1 and we are in the case above.

(W3) We first consider the caseα = τ. Then,~q
τ
−→ implies∃i. qi

τ
−→ qi for someqi . Moreover,

~q can only be inW2 and not inW1 sinceW1 requires~q to be stable. Thus, w.l.o.g.,qi is

chosen such thatqi
ǫ
=⇒| . By definition ofW2, we have~q

τ
−→ (q1, . . . , qi , . . . , qn) ∈W2.

If α , τ, then~q
α
−→ means~q ∈ W1. Moreover,qi

α
−→ for all i. Thus, due to~p < F�P and

pi ⊏
∼RS

qi, we have∀i. pi
α
−→ by Cond. (RS4). Thus,~p

α
−→, and hence∃~p′. ~p

α
=⇒| (~p′, p)

and∀i. pi
α
=⇒| p′i . By Cond. (RS3), there existq′i and q̂i such thatqi

α
−→F q̂i

ǫ
=⇒|q′i and

p′i ⊏
∼RS

q′i . Moreover, we knowp⊏
∼RS

q and p < FP, so that (q′1, . . . , q
′
n, q) ∈ W1. Now,

~q
α
−→ (q̂1, . . . , q̂n, q) ∈W2.

(W4) If ~q ∈ W1, thenqi is stable for alli, which implies that~q is stable, too. Therefore,~q can
stabilise trivially inW.

If ~q ∈ W2, then~q can stabilise since everyqi can stabilise by the definition ofW2. This
stabilisation is inW2 by construction. �

Appendix A.2. Proof of Lemma 16

P. We first show the lemma for⊏∼RS
in place of⊑RS, before concluding by establishing the

root condition. In order to provep⊏
∼RS

qi from p ⊏
∼RS

~q for all p ∈ P and~q ∈ �Ψ, it is sufficient
to establish that

R =df {〈p, qi〉 | ∃n, q1, . . . , qi−1, qi+1, . . . , qn. p⊏
∼RS

~q}

is a stable rs-relation. We verify Conds. (RS1)–(RS4) of Def. 4:

(RS1) Processp is stable, and allqi are stable since~q is stable.

(RS2) If p < F, then~q < F sincep⊏
∼RS

~q. Hence,qi < F.

(RS3) Let p
a
=⇒| p′. By p⊏

∼RS
~q, there exists some~q′ = (q′1, . . . , q

′
n+1) such that~q

a
=⇒| ~q′ and

p′ ⊏∼RS
~q′. Therefore,qi

a
=⇒| q′i and〈p′, q′i 〉 ∈ R.
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(RS4) Let p < F. Then,I(p) = I(~q) due top⊏
∼RS

~q. By construction,I(~q) = I(q1) = . . . =

I(qn) since~q < F by the above. Hence,I(p) = I(qi).

We can now complete the proof of the lemma by establishing theroot condition. Letp
ǫ
=⇒| p′ for

somep′. Hence, byp ⊑RS ~q, there exists some~q′ = (q′1, . . . , q
′
m) such that~q

ǫ
=⇒| ~q′ andp′ ⊏∼RS

~q′.

This impliesqi
ǫ
=⇒| q′i and, by the above,p′ ⊏∼RS

q′i . �

Appendix A.3. Proof of Lemma 22

P. For proving Part (1), we have that eachp′′ , p′ on the run underlyingp
ǫ
=⇒| p′ is instable

in P̂. Insertingp′′
τ
−→ (p′′, ∅) in each case (andp′

τ
−→ (p′,M′)) we get a run inP̂, proving that

p
ǫ
=⇒| (p′,M′). Note thatp′′ < F implies p′′ < F̂ and (p′′, ∅) < F̂, and similarly forp′ < F.

For proving Part (2), observe that the run underlyingp
ǫ
=⇒| (p′,M′) consists of pairs of transi-

tionsp′′
τ
−→ (p′′, ∅)

τ
−→ p′′′ and the last stepp′

τ
−→ (p′,M′). Replacing each pair byp′′

τ
−→ p′′′

and omitting the last step, we get a run provingp
ǫ
=⇒| p′ in P. Note that, for eachp′′, we have

p′′ < F̂ and thusp′′ < F. �
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