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Abstract. This paper presents a case study in modelling and verifying
the Linux Virtual File System (VFS). Our work is set in the context of
Hoare’s verification grand challenge and, in particular, Joshi and Holz-
mann’s mini-challenge to build a verifiable file system. The aim of the
study is to assess the viability of retrospective verification of a VFS
implementation using model-checking technology. We show how to ex-
tract an executable model of the Linux VFS implementation, validate
the model by employing the simulation capabilities of SPIN, and analyse
it for adherence to data integrity constraints and deadlock freedom using
the SMART model checker.

1 Introduction

Hoare has proposed a 15-year grand challenge which calls on the program verifi-
cation community to collaborate on building verifiable programs [16]. Joshi and
Holzmann have subsequently provided a mini-challenge [19] of building a verifi-
able file system as a stepping stone towards meeting Hoare’s challenge. Neither
challenge overly constrains the verification approach. On the one hand, for ex-
ample, there is the constructive approach in which formal reasoning is employed
to first establish the validity of a specification and then the correctness of an
implementation with respect to the specification. On the other hand, the analyt-
ical approach aims to build a valid abstract model of an existing implementation
and then to show that this model satisfies some correctness criteria.

This paper applies the analytical approach to verifying an implementation
of the Virtual File System (VFS) layer [4] within the Linux kernel, using model-
checking technology. This layer is of particular interest since it provides sup-
port for implementing concrete file systems such as EXT3 and ReiserFS, and
encapsulates the details on top of which C POSIX libraries are defined; such li-
braries in turn provide functions, e.g., open and remove, that facilitate file access
(cf. Sec. 2). The aim of our case study is to assess the feasibility of analytical
program verification to Joshi and Holzmann’s mini-challenge. In particular, we
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are interested in whether and how an appropriate model of the VFS implemen-
tation can be constructed, and if meaningful verification results can be obtained
given the limitations of current model-checking technology.

Our first contribution is in modelling the complex Linux VFS implementation
that consists of more than 65k lines of C code, based on an analysis of the
data structures and algorithms employed in VFS (cf. Sec. 3). Despite the recent
advances in software model checking — as exemplified by the BLAST model
checker [15] and Microsoft’s Static Device Verifier (www.microsoft.com/whdc/dev
tools/tools/SDV.mspx ) which, under the hood, automatically extract models
from C code —, one quickly reaches their limits when applying them to operating
systems code, such as the VFS code. This is because such code makes use of
dynamic memory allocation, function pointers, macros and inlined assembly [21].
Until techniques addressing these shortcomings have matured, building models
from operating systems code remains largely a manual task.

Our VFS model is the result of slicing away and abstracting some details of
the VFS data structures and algorithms. This is done in a way that makes the
model amenable to modern model checkers while maintaining all details neces-
sary for checking non-trivial data-integrity properties. The model is expressed
abstractly in a subset of C, so that it can easily be reused by others. While
building the model took several weeks, its validation via reviewing and simu-
lation consumed several months. The simulation was carried out in the SPIN
model checker [17] since SPIN has rich simulation capabilities, with support for
run-time assertions, and an input language into which our model can be cast
straightforwardly. However, since our model is sufficiently close to the VFS im-
plementation and thus exhibits a large state space with wide state vectors, we
were unable to run SPIN in verification mode, even when disallowing concur-
rent access to VFS functions. Also, the VFS model cannot be verified by model
checkers that do not support concurrency, such as BLAST.

The paper’s second contribution is the formal verification of our VFS model
by using model checking to analyse low-probability scenarios, thereby increas-
ing confidence in the correctness of the Linux kernel (cf. Sec. 4). In particular,
we were looking for, and not expected to find, the corruption of the underlying
data state and deadlocks. The challenge here is to identify data-integrity prop-
erties from the rather shallow VFS documentation. To conduct the verification,
we translated our model into Petri nets and used the model checker SMART [6]
which implements efficient, decision-diagram-based algorithms for analysing con-
current systems. SMART was chosen here because of our familiarity with the tool
and its proven record for analysing complex models, including NASA’s Runway
Safety Monitor [22] and the SPIDER clock synchronisation and self-stabilisation
protocols [20]. While the VFS model pushes SMART to its limits, we were able
to successfully prove all considered properties.

Our case study is novel because of its approach and scope. It tests the fea-
sibility of reverse-engineering a model of an existing file system, including data
structures and locking mechanisms, and of checking such a model for adherence
to healthiness properties. This contrasts with other work in the field (cf. Sec. 5)



which employs either the constructive approach to verification [2, 11], or model-
checking as a run-time verification technique for driving a test-harness for the
implementation [23, 24]. Our file system model is of particular interest to NASA
which is currently developing, together with JPL, a pilot project to help build a
reliable file system for flash memory.

2 The Linux Virtual File System

This section introduces the Linux file system architecture and, in particular,
the Virtual File System layer. For a more detailed description, we refer the
reader to [4] and www.cse.unsw.edu.au/˜neilb/oss/linux-commentary/vfs.html.
An overview of the VFS internals and data structures is presented in Fig. 1

Fig. 1. Illustration of the VFS environment and data structures.

Architecture. The Linux file system architecture consists of six layers. The
most abstract is the application layer which refers to the user programs; this is
shown as Process 1 to 3 in Fig. 1. Its functionality is constructed on top of the
file access mechanisms offered by the C POSIX library, which provides functions
facilitating file access as defined by the POSIX Standard [14], e.g., open open(),
delete remove(), make directory mkdir() and remove directory rmdir(). The
next lower layer is the system call interface which propagates requests for system
resources from applications in user space to the operating system kernel.

The Virtual File System layer is an indirection layer, providing the data
structures and interfaces needed for system calls related to a standard Unix file
system. It defines a common interface that allows many kinds of specific file
systems to coexist, and enables the default processing needed to maintain the
internal representation of a file system. The VFS runs in a highly concurrent
environment as its interface functions may be invoked by multiple, concurrently



executing application programs. Therefore, mechanisms implementing mutual
exclusion are widely used to prevent inconsistencies in VFS data structures, such
as atomic values, mutexes, reader-writer semaphores and spinlocks. In addition,
several global locks are employed to protect the global lists of data structures
while entries are appended or removed. To serve a single system call, typically
multiple locks have to be obtained and released in the right order. Failing to do
so could drive the VFS into a deadlock or an undefined state.

Each specific file system, such as EXT2, EXT3 and ReiserFS, then imple-
ments the processing for supporting the file system and operates on the data
structures of the VFS layer. Its purpose is to provide an interface between the
internal view of the file system and physical media by translating between the
VFS data structures and their on-disk representations. Finally, the lowest layer
contains device drivers which implement access control for physical media.

Data structures. The most relevant data structures are superblocks, dentries
and inodes, whose names are used in different contexts outside the VFS; we em-
ploy the VFS-related definitions rather than their file-system-specific meanings
or their on-disk representations (cf. Fig. 1). The super block data structure de-
scribes the abstract properties of the file system, such as its type (e.g., EXT3),
the physical device on which it resides, its total size, its mount point and a pointer
to the root dentry. The struct super_block is defined in include/linux/fs.h.

The dentry data structures collectively describe the structure of the file sys-
tem. Each dentry contains a file’s name, a link to the dentry’s parent, the list
of subdirectories and siblings, hard link information, mount information, a link
to the relevant super block, and locking structures. It also carries a reference
to its corresponding inode, and a reference count that reflects the number of
processes currently using the dentry. Dentries are hashed to speed up access; the
hashed dentries are referred to as the Directory Entry Cache, or dcache, which
is frequently consulted when resolving path names embedded within function
calls. The dentry struct is defined in include/linux/dcache.h.

The inode data structure carries information specific to a file, whether it is a
regular file, directory or device. This includes a link to the relevant super block,
backward links to the dentries referencing the inode, file permissions, file type,
file size, operations for use on inodes by the VFS, callbacks to the specific file sys-
tem, device-specific information, and information about how the file is memory-
mapped, e.g., it links to file objects which capture the data needed to support file
descriptors in user space. The struct inode is defined in include/linux/fs.h.

Implementation. The public interface of the Linux 2.6.18 VFS consists mainly
of the header files fs.h, namei.h and dcache.h residing in include/linux. The
implementation of system calls can be found in the fs subdirectory of the kernel
source tree. Here, the files dcache.c, namei.c, inode.c, stat.c and open.c are
notable; they contain the logic for the system calls featured in our model.

To explain the interaction between the different parts of the VFS, we take
the creat() system call as an example. The functions involved comprise roughly
5k lines of source code, not including data structure definitions and macro ex-
pansions. In POSIX, the signature of creat() is defined as:



int creat(const char *pathname, mode_t mode);

providing the full path to the file to be created and the desired file permissions.
In the following we discard all permission handling. The VFS entry point for
creat() is the function sys_creat() defined in open.c which redirects to

sys_open(pathname, O_CREAT | O_WRONLY | O_TRUNC, mode);

Therefore, creat() is handled as a special case of the open() system call.
sys_open() then triggers do_sys_open() that calls do_filp_open(), which in
turn invokes open_namei(). This last function resides in namei.c and represents
the main part of the open routine. It first uses do_path_lookup() to traverse
the dentry directory tree. This involves increasing and decreasing usage coun-
ters by calling dget()/dput() from dcache.c and obtaining locks for dentries
belonging to the path. If at least the parent directory of the file to be created
exists, do_path_lookup() returns successfully, passing a pointer to the parent’s
dentry. If the target file for the creat() operation does not yet exist, the path
lookup function will return a dentry that is not yet associated with an inode. In
that case, open_namei() invokes vfs_creat() to propagate the creation of an
inode down to the specific file system and link the newly created inode to the
dentry. At this point, the file creation is complete.

Additionally, the process of creating a file involves obtaining and releasing
several reader-writer semaphores as well as the i_mutex of the parent’s inode.
It also has to obtain global spinlocks protecting complete lists of dentries and
inodes, in case the execution of the system call is preempted by the scheduler.

Properties. One aim of our study is to show the absence of two principal types
of error in the VFS implementation. Firstly, since locking mechanisms are a
key part of the implementation, we are interested in the existence of scenarios
that might cause deadlock. Secondly, since some fields of the data structures are
logically dependent, we wish to establish integrity properties implying that the
file system is being maintained in a consistent state. These properties encapsu-
late relationships between the data structures that ought to hold universally or
between calls to VFS functions. These integrity properties are of three types:

(a) Allocation properties, expressing that the information pointed to by the
fields of assigned nodes is allocated;

(b) Reference properties, expressing that reference counters are maintained in
a healthy way by the functions operating on the VFS;

(c) Structural properties, expressing static relationships between the data struc-
tures of the VFS, which ought to be maintained by the functions operating
on these structures.

3 Extracting and Validating our VFS Model

This section presents our model of the Linux VFS implementation, discusses
our adopted methodology for extracting the model, justifies our key modelling
decisions, and summarises our approach to validating the model.



Initial considerations. The Linux VFS implementation is very large in size:
approximately 65k lines of C code are directly relevant to the VFS and must be
analysed thoroughly, whilst roughly 80k lines of code which include details of,
e.g., memory and scheduling, are less directly relevant but require consideration
nonetheless. Concurrency mechanisms and the use of macros also add to the
complexity. Therefore, automation of the modelling process is a key concern.

To this end, we initially explored Modex [18] which can be used to extract
high-level SPIN models directly from C source code. The aim was to use Modex
in the initial phase of modelling to produce a slice of the VFS implementation.
Unfortunately, despite attempts to simplify the task by, e.g., preprocessing the
source code, Modex failed to parse the kernel source. This was likely due to non-
standard and compiler-dependent source code fragments. We also considered
software model checkers, such as BLAST [15], but found them to be ineffective
for similar reasons. In the end, the only recourse was to use automation less
directly, to support an essentially manual modelling process.

To facilitate this, we needed to carefully analyse the VFS implementation
to identify the data structures that have to be captured by the model, and the
integrity properties that these structures ought to satisfy. Despite the wealth of
available information on the Linux VFS, these usually comprise English language
descriptions of the data structures together with associated operation signatures.
In contrast, [11] provides a formal specification of part of the POSIX interface.
However, this is too abstract for our purposes as it avoids VFS-level consid-
erations such as the maintenance of internal data structures and how locking
mechanisms are employed. Because we required precision in order to produce an
accurate model, our model had to be derived from the source code itself.

Modelling decisions. Since our case study is embedded within a research
project, the scope of our VFS model had to be adjusted so as to fit the project’s
schedule. Therefore, we chose to incorporate only the basic operations on objects
in the file system: creating files and directories, and deleting files and directories.
Other POSIX commands, e.g., regarding mounting and links, were deferred; this
means that only a single superblock structure is necessary. In addition, we treat
files as atomic entities, thus abstracting from file content.

For practical purposes, it is necessary to impose a limit on the size of the
file system that the model is to maintain. To keep state spaces tractable, we set
this limit to eight nodes including root. The choice of eight nodes means that
we were able to investigate operations on non-trivial configurations of the file
system whilst remaining within the bounds imposed by current model-checking
technology. In particular, we avoided modelling the dentry hash table as it is
an unnecessary cost given the eight-nodes limit; the hash table look-up function
can instead be modelled efficiently as a search over all dentries.

A final modelling decision underlying this case study embraces a dynamic file
structure where links are explicit, rather than a fixed structure where links are
implicit and inferable from each node; this means that we were able to remain
more faithful to the implementation.



Representing the VFS data structures. Central to the VFS implementa-
tion are the logical structures of the file system (including parents, siblings and
subdirectories) and the locking mechanisms (including spinlocks, mutexes and
reader-writer semaphores). Consequently, the superblock, dentry and inode data
structures of the VFS implementation must be represented in our model, and the
most significant issue becomes which of the structures’ fields should be included,
how to represent them, and which fields can be omitted.

The process of identifying the fields of interest must be based on the informa-
tion contained in the header files and consider how each field is used by the VFS
implementation. Full details of our engagement in this lengthy process can be
found in a technical report [13]. For example, for the dentry table, the key fields
are: (i) d lock, since locking is essential for concurrency; (ii) d inode, d parent,
d child and d subdirs, since these capture the structure of the file system; (iii)
d count, which records whether a dentry is assigned and the number of processes
accessing the dentry. Additionally, an is allocated boolean flag was introduced
to model dynamic data allocation.

The next decision is how to represent each field and estimate the number
of bits required. Our parameters for the dentry table are: (i) d lock is assigned
three bits: one for the status of the lock, one for the process holding the lock
(up to two processes), and one indicating a waiting process; (ii) d inode and
d parent are assigned three bits each, allowing one to reference a maximum of
eight inodes and dentries, whereas d child and d subdirs are allocated eight bits
each, allowing up to eight siblings and children of a dentry to be marked rather
than stored as a linked list; (iii) d count is allocated three bits, permitting up to
two processes to access a dentry at a time, with one bit contingency. In addition,
d iname is allocated three bits, allowing for eight different names and giving a
maximum directory structure width of seven (plus the root).

Extracting the VFS model. The aim of the extraction process was to isolate
the algorithms operating on the identified VFS data structures, and to express
these in C syntax in an abstract way. The choice of using C as the modelling
language also simplified the validation of our model, since it eases comparisons
between model and implementation and since it can easily be fed into simulators.

As indicated earlier, the task of extracting a model from the VFS imple-
mentation was made difficult by a number of factors, including the size of the
implementation and the heavy use of dynamic memory allocation and function
pointers. Concurrency issues also contributed to the complexity of the exercise.
To provide at least some automated support for the task, we generated call
traces from kernel executions, which allowed us to obtain a series of algorithmic
“snapshots” and thus an accurate impression of functionality and ordering. For
example, by analysing the traces for sys_creat(), it was possible to confirm its
behaviour that we presented in Sec. 2.

To obtain traces from a running Linux kernel we adopted the Kernel Func-
tion Trace tool (KFT, tree.celinuxforum.org/CelfPubWiki/KernelFunction) to
work with Linux 2.6.18, implemented a few simple test drivers that initialised
KFT for a particular system call such as sys_creat(), executed the call and



obtained the trace. KFT itself employs the finstrument-functions (gcc.gnu.org/
onlinedocs/gcc/Code-Gen-Options.htm) capability of the compiler to add instru-
mentation call-outs to every function entry and exit, which are used to dump
the jump and return addresses to a trace log. With the help of the kernel’s sym-
bol table, the log entries can be translated into their respective function names.
However, the view of the VFS we obtained from call traces is necessarily incom-
plete, and a great deal of effort still had to be spent manually inspecting the
code. This is due to several reasons: (i) call traces do not reveal how a partic-
ular function operates on the VFS data structures of interest; (ii) macros are
not instrumented; (iii) several important function calls are missing in each trace
since some functions cannot be instrumented; this is because they have to be
called from an atomic context in which performing blocking I/O operations, i.e.,
writing out a log message, is not permitted.

Using call traces and manual inspection we were able to model the core be-
haviour of the VFS within several person weeks. Table 1 presents the model
fragment which we extracted for the creat() function discussed above. Simi-
lar fragments were produced for the system calls sys_unlink(), sys_mkdir(),
sys_rmdir() and sys_rename(), for various additional VFS functions such as
path_lookup() and path_release(), as well as for functions that belong to
other parts of the kernel’s infrastructure. Due to space constraints — the com-
plete model is about 3k lines — we cannot show it in full here. However, the
final model can be downloaded from research.nianet.org/˜radu/VFS/.

Validating the VFS model. In the absence of full automation, we adapted two
classic techniques for validation: (a) our final model was extensively reviewed and
cross-checked against the implementation, with an overall effort of two person
months; (b) a similar effort was spent in simulating our model.

For conducting the simulation runs, we employed the SPIN verifier [17] for
two reasons. Firstly, the syntax of SPIN’s input language Promela is close to
the C syntax adopted by our model. Therefore, the translation could be per-
formed quickly and with little risk of introducing errors. Secondly, SPIN’s rich
simulation capabilities, along with the ability to add assertions, allowed for a
rigorous testing regime to be implemented. To aid simulation, our SPIN model
was confined to a single process, thereby eliminating the complexity introduced
by concurrency. More than 100 different simulation runs were conducted on the
SPIN model that was heavily injected with assertions; about 3% of the model’s
lines are assertion statements. Each run was performed as a simulation of one
of the system calls from a recognised ‘healthy’ state, involving creating/deleting
existing/non-existing files/directories at various levels, attempting to delete the
root and copying a directory onto itself, etc. Several early errors in our VFS
model were identified and corrected by these means.

Part of the model validation was also carried out during the verification
phase, which involved the model checker SMART [6] as described below. Indeed,
several errors were eliminated as part of the SMART modelling process where,
in the first instance, model discrepancies such as unexpected verification results,
property violations and deadlocks were treated as potential signs of an invalid



Table 1. Model fragment for sys creat().

int sys_creat (string path) {

lookup_res_t l;

inode_t itmp;

dentry_t parent, file;

l = path_lookup (path);

parent = *l.parent;

file = *l.file;

if (!parent.is_allocated)

{

if (file.is_allocated)

/* deals with root look up */

{ dput(file); }

return (ERROR);

}

down (parent.d_inode->i_mutex);

if (file.is_allocated &&

!is_directory (file))

{ up (parent.d_inode->i_mutex);

path_release (file);

return (SUCCESS); }

if (file.is_allocated &&

is_directory (file))

{ up (parent.d_inode->i_mutex);

path_release (file);

return (ERROR); }

spin_lock (dcache_lock);

file = allocate_dentry(

last_component(path), parent);

if (!file.is_allocated)

{ spin_unlock (dcache_lock);

up (parent.d_inode->i_mutex);

dput (parent);

return (ERROR); }

dget (file);

spin_lock (inode_lock);

itmp = allocate_inode(file);

file.d_inode = &itmp;

spin_unlock (inode_lock);

if (!file.d_inode->is_allocated)

{ atomic_write (file.d_count, 0);

dput (parent);

spin_unlock (dcache_lock);

up (parent.d_inode->i_mutex);

return (ERROR); }

update_parent(

*((dentry_t *)file.d_parent));

path_release (file);

spin_unlock (dcache_lock);

up (parent.d_inode->i_mutex);

return (SUCCESS);

}

abstraction. For each discrepancy, the VFS model was re-checked against the
VFS implementation and, if appropriate, revised.

4 Verifying our VFS Model Using SMART

The next step in our case study was to verify our validated VFS model for
absence of deadlock and adherence to data-integrity constraints using model-
checking technology. To do so, we initially attempted to run SPIN in verification
mode on the (single-process) SPIN model and established freedom from asser-
tion violations. However, the analysis on a modern PC failed for all but the
most trivial configurations that involve two or three nodes only, since the sizes
of the state vector and the reachable state spaces are simply too large to be rep-
resented explicitly, even using advanced features such as collapse compression.



Also model checkers such as BLAST [15] cannot deal with our VFS model, due
to the presence of concurrency in the VFS environment.

We therefore shifted our focus to SMART, which is a state-of-the-art sym-
bolic model-checker for concurrent systems [6] with which we are most familiar.
SMART implements the Saturation algorithm [8] which exploits properties of
interleaving semantics for manipulating decision diagrams and can be signifi-
cantly more time- and memory-efficient than SPIN [7]. As SMART provides a
notation based on Petri nets rather than a software modelling language, we had
to rephrase our VFS model into a Petri net. This involved introducing a program
counter and circumventing the unavailability of advanced (and recursive) data
structures. In addition, our SMART model had to comply with a restriction im-
posed by Saturation which, informally, demands that Petri net places that are
functionally dependent on others be grouped in the same net partition [8].

Our VFS model as a Petri net. As for the VFS model in C, the SMART
model is parameterised by the maximum number of dentries (ND), inodes (NI),
and concurrent processes (NP). The encoding employed for translating the VFS
model to SMART is rather straightforward: variables are represented as Petri
net places, and instructions are represented as Petri net transitions. Moreover,
the fields of the dentry and inode data structures are represented as arrays, i.e.,
the d parent field of dentry k is the element d parent [k].

In constructing the SMART model, the VFS algorithms and data structures
were abstracted in a number of minor ways to make it possible to capture the
required behaviour without introducing incidental complexity. One example is
the need to represent path arguments to system calls and the traversal of the
dentry tree structure. Lists, as used in VFS, are not native to the SMART lan-
guage, and introducing them artificially would have incurred unacceptable over-
heads. Instead, our SMART model indexes the fully qualified filenames present
in the system with natural numbers. This means that the d iname field could
be dropped, which also simplifies the path_lookup() function.

Another aspect involves the deallocation of unused nodes, which in the VFS
implementation is performed separately by a garbage collection process. Our
SMART model assumes an “as early as possible” deallocation in order to se-
quentialise deallocation and minimise complexity. Further abstractions concern
the d_subdirs field that is used to record whether the dentry is a directory,
rather than the identity of its sub-directories, and the d_child field that is used
to record the number of siblings, rather than the identity of the siblings.

Again, the resulting VFS model cannot be reproduced here due to space
constraints — e.g., the SMART code for the creat() function alone is 650 lines
—, but is available for download from research.nianet.org/˜radu/VFS/. The VFS
model ranks with the most complex systems ever modelled in SMART. This
perspective is not only reflected by the sheer size of the model (2,900 lines of
SMART code), but also by the inherent complexity of the VFS. For comparison,
two other similar industrial-size applications modelled in SMART are NASA’s
Runway Safety Monitor [22] (1,850 lines) and NASA’s clock synchronisation and
self-stabilisation protocols [20] for the SPIDER architecture (1,190 lines).



Integrity properties. As stated in Sec. 2, we wished to verify that the VFS
model is free of deadlock and that it maintains integrity properties on its data
structures. For the latter, we concentrated on the following three properties:

(a) If a node is assigned, then its parent is allocated. Here, ‘assigned’ means that
the node itself is allocated and marked as in use (i.e., d count > 0). This is an
allocation property that may be formalised by:

∀d1, d2 : Dentry • d1.is allocated>0 ∧ d1.d count>0 ∧ d1.d parent=d2 ⇒
d2.is allocated>0.

(b) When the system is stable, i.e., between file system operations, all allocated
nodes’ d counts are either 0 or 1. This means that a node’s reference counter
does not imply that the node is in the process of inspection or alteration between
operations. This is a reference property that may be formalised by:

∀d : Dentry • stable ∧ d.is allocated>0 ⇒ d.d count=0 ∨ d.d count=1,

where predicate stable is defined using the value of the program counter.

(c) The only cycle in the parent relation is the one on root. (By default, the
parent of the root is itself.) This is a structural property that, for a file system
of at most eight nodes, may be formalised by:

∀d1, d2, d3, d4, d5, d6, d7, d8 : Dentry •
d1.is allocated>0 ∧ d1.d count>0 ∧ . . . ∧ d8.is allocated>0 ∧ d8.d count>0 ∧

d1.d parent=d2 ∧ . . . ∧ d7.d parent=d8 ⇒ d8=root .

Formulating the required properties in SMART, including deadlock freedom,
amounts to re-expressing them as simple operations over decision diagrams. This
is straightforward except for the cycle-freedom property which we capture as a
set of properties: “no cycles of length one, except for root”; “no cycles of length
two”; “no cycles of length three”, etc.

Table 2. State-space generation results for SMART.

ND NI states time (sec) mem. (MB) ND NI states time (sec) mem. (MB)

1 process 2 processes

2 2 325 1.02 1 2 2 222,715 258.49 223
3 3 12,077 9.94 12 2 3 222,715 318.77 233
4 4 1,085,247 77.27 131 3 2 - - >8,000
5 5 173,247,829 1,056.88 2,147 3 3 - - >8,000

Verification results. Before verifying the properties of interest, it was necessary
to construct the state space of the model. Various instantiations of ND, NI and
NP were examined. Table 2 lists the results when conducting our experiments
using the 64bit version of SMART on a 3.2GHz machine with 8GB of memory
running Redhat Enterprise Linux version 2.6.9-5ELsmp. The most significant



contributor to the complexity is the number of concurrent processes, with NP≥3
unanalysable, and NP=2 with ND>2 also exceeding memory.3

The integrity properties formalised above were checked successfully against
the generated state space, for each instantiation of ND, NI, and NP. Additionally,
we verified the following properties: “root is always allocated”; “root is always
in use”, i.e., d count>0 is an invariant; and “the parent of an assigned node is
in use”. Each property was checked for each configuration in negligible time of
less than one second, and shown to hold. Collectively the properties imply that
every node currently in use is connected to the root.

We also checked each configuration for deadlocks. Initially, the model con-
tained deadlocked states, for the truly concurrent setting (NP=2). Further anal-
ysis revealed that this was due to the implementation’s critical use of a structure
that had been abstracted away, the dcache . An extra bit was added to the Dentry
structure to represent the missing information, and the model was revised ac-
cordingly. The model was then shown to be deadlock free, taking negligible time
of less than one second for each configuration.

A livelock scenario was also uncovered by SMART when two processes at-
tempt to unlink() the same file simultaneously. After an extensive analysis of
the source code, this was attributed to the abstraction of protocols and schedul-
ing policy designed to ensure fairness over the way spinlocks were accessed.
Unfortunately, little documentation exists on the actual implementation of the
scheduler for us to be able to give a firm verdict on whether the scenario is a
false positive. However, this shows that modern model checkers can check more
than safety properties on our VFS model. Indeed, from a model-checker’s stand-
point, we investigated three categories of properties: (i) safety properties which,
once the reachable state space is constructed, require a single decision-diagram
operation; (ii) deadlock which requires a single backward image computation on
the reachable state space; (iii) livelock which requires a fixed-point computation.

5 Related Work

While [9, 10] provide techniques for verifying the correct use of file system in-
terfaces represented as finite-state machines, work on verifying properties of file
system implementations is relatively scarce.

An ongoing research project on verifying a POSIX-compliant file store, from
the application interface down to the data representation on a physical medium,
is outlined in [12]. Current work focuses on the construction of formal models of
NAND flash memory and the commands that are used to operate it.

A correctness proof for a basic file system with standard data structures and
fixed-sized disk blocks is presented in [2]. It uses the Athena theorem prover and
employs the constructive approach to verification (as does [11]). The Athena

3 The state spaces for two processes and ND=2 are indeed identical for NI=2 and
NI=3. This is because the third inode is never used in this configuration, since
ND<NI and because the allocation policy always returns the first available index.



model involves some of the data structures covered here and also their respec-
tive media representation. The work differs from ours in that it does not deal
with concurrency-related issues and does not consider a ‘real’ file system imple-
mentation, thereby avoiding the process of model extraction.

Actual file system implementations are studied by Engler et al. in [23, 24].
In [24], model checking is used within the systematic testing of EXT3, JFS and
ReiserFS. The verification system consists of an explicit-state model checker
running the Linux kernel, a file system test driver, a permutation checker which
verifies that a file system can always recover, and a recovery checker using the
fsck recovery tool. The system starts with an empty file system and recursively
generates successive states by executing system calls affecting the file system.
After each step, the system is interrupted and fsck is used to check whether
the file system can recover to a valid state. This approach is combined in [23]
with symbolic execution for generating pathological test cases. In contrast to our
work, [23, 24] employ run-time verification techniques that cannot exhaustively
explore the implementation’s state space. However, an advantage over our work
is that these techniques do not require manual model extraction.

Verification approaches that model-check the source code of operating system
components are presented in [3, 5, 15]. In theory, these are able to prove a file
system implementation to be, e.g., free of deadlock. However, as shown in [21],
the model checkers employed in [3, 5, 15] also require manual preprocessing
of source code. An approach to verifying the implementation of a microkernel’s
paging mechanism, including a hard disk driver implemented in a fully formalised
subset of C and inline assembly, is presented in [1].

6 Conclusions and Future Work

In response to Joshi and Holzmann’s mini challenge, we have constructed and
verified a small model of several key components of the Linux Virtual File Sys-
tem (VFS). This proved to be a challenging task since current automated tech-
niques for extracting models from C source code cannot deal with important as-
pects of operating systems code, including macros, dynamic memory allocation,
architecture- and compiler-specific code, and inlined assembly. Extracting our
model by hand was made especially difficult and time-consuming by the VFS im-
plementation’s concurrency mechanisms, uncommon coding styles, and the sheer
volume of code. Much time was spent in validating our model via reviews and
simulation runs in SPIN. Using the SMART model checker, this model was then
shown to respect data-integrity properties and to be deadlock free. The three
variants of our VFS model, in C syntax, SPIN’s Promela language and SMART’s
Petri nets, are available for download from research.nianet.org/˜radu/VFS/.

Our case study clearly demonstrates the feasibility of abstracting data struc-
tures and algorithms from a complex file-system implementation, analysing their
behaviour via simulation and model checking, and inferring conclusions about
the implementation’s correctness. However, automated extraction of faithful
models is paramount in analytical software verification and must be a continuing



focus for research. This must involve not just program slicing but also represen-
tational changes in data structures and algorithms.

Some take-away messages. Here is what this VFS case study has taught us
personally, in general terms and regarding various aspects of our work:

Goal: It makes a big difference whether one targets “bug discovery” (debugging)
or “bug absence” (verification).

Automation: There is a stringent need for automating model extraction, but
no existing tool is mature enough to have served our purpose.

Soundness: Building multiple models is important for fully understanding the
underlying system; however, our ‘staged’ approach could be strengthened by
checking the links between the stages formally.

Complexity: Certain aspects of the system, such as the operating system’s
scheduler which is external to the VFS code, cannot be faithfully modeled
without dramatically increasing the size and complexity of the model.

Scalability: The fact that modern model checkers cannot handle larger param-
eters of our model should not be seen as a deterant since model checking
technology is improving quickly.

Future work. It would be valuable to extend the scope of our case study. For in-
stance, considering more functionality such as the specific file system layer would
enable more direct comparisons with other approaches to the mini-challenge,
e.g., [12]. An alternative way to extend the scope would be to incorporate an
abstract model of the scheduler which, e.g., would allow one to adequately check
for the absence of livelocks.

Acknowledgments. We thank the reviewers for their insightful comments, and
in particular for suggesting the inclusion of ‘take-away’ messages.
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