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Abstract. Benchmarks, such as the established ISCAS benchmarks of
digital circuits, have been successfully used to compare the relative mer-
its of many model-checking tools and techniques employed for verify-
ing synchronous systems. However, no benchmark for model checkers
of asynchronous concurrent systems, such as communications protocols
and distributed controllers, currently exists. This not only prevents a
transparent evaluation of technologies in the field, but also hinders the
accumulation and communication of insights into why and where partic-
ular technologies work better than others.

This paper takes a first step towards establishing a benchmark for asyn-
chronous concurrent systems. It first discusses the underlying challenges
when dealing with model-checking technologies for such systems. A pro-
totype benchmark is then proposed, which is the result of an extensive
survey and systematic classification of asynchronous concurrent systems
studied in the literature. Finally, the proposed benchmark is evaluated
against an established benchmarking theory.

1 Introduction

Temporal-logic model checking [17] is an established field with a wealth of pub-
lications and no lack of tool support. Many publications include some sort of
evaluation of a proposed technique or tool, often through experimentation with
one or more case studies and performance comparisons against alternative tech-
niques or tools. To achieve high academic standards, it is important that this
evaluation is as transparent and objective as possible.

Benchmarks are well known for providing a standard context, together with
a set of performance criteria, in which the performance of technologies can be
rigorously examined. Thus, benchmarks can provide an impartial means for com-
paring different tools and techniques. Even more, they can also be used for the
purpose of validation and thorough examination of research contributions. The
importance of benchmarks has already been recognised in the model-checking
community. For the class of synchronous systems and particularly digital cir-
cuits, researchers employ the widely—accepted ISCAS benchmarks [7,8]. How-
ever, an equivalent benchmark does not exist regarding asynchronous concurrent
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systems, such as communications protocols and distributed controllers, whose
behaviour is governed by the principle of interleaving.

As a consequence, the typical paper proposing a new technology for model-
checking asynchronous systems often selects case studies in a way that compares
the author’s work quite favourably against existing work; otherwise, the paper
might not be accepted for publication [27]. However, the successful application
of a new technology to a case study only testifies to the viability of the tool in
which the technology is implemented, rather than its relative merits compared
to other technologies. This stresses the need for benchmarking model checkers
for asynchronous concurrent systems, in addition to comparing the features and
availability of model checkers as has been done, e.g., by Brim et al. [9]. Also
Avrunin [4] highlights the need for benchmarking and provides a set of recom-
mendations in that direction. Leue et al. [33] assembled a database of Promela
models, which points to academic and industrial case studies conducted with
the SPIN model checker. Corbett [18] compiled various Ada tasking programs
to evaluate deadlock detection methods, while the work of Jones et al. [28] focuses
on the metrics for comparing parallel model checkers. Peldnek [38] also recog-
nises the need for benchmarking and suggests that properties of state spaces can
be used to analyse the performance of model checkers.

This paper. This paper presents a first step towards establishing a benchmark
for model checkers of asynchronous concurrent systems. We restrict ourselves to
traditional temporal-logic model checking, such as implemented in SPIN [25]
and NuSMV [16], and exclude those tools where temporal-logic model checking
has been combined with other decision procedures. The envisioned benchmark
shall be usable by academics researching model—checking technology and prac-
titioners who want to find out which technology suits best their application. In
contrast to the related work mentioned above, we aim for a benchmark that
covers the full range of asynchronous concurrent systems, from communications
protocols to mutex protocols to controllers. However, our benchmark should not
be a simple collection of system models, but should also classify models accord-
ing to those of their characteristics that effect model-checking technology and
performance, e.g., whether models are loosely or tightly coupled, what commu-
nication mechanisms they use, and their sizes. The benchmark shall additionally
include pointers to the literature where the models have been studied, together
with a summary of the reported results. The methodology adopted by us is
adopted from the benchmarking theory of Sim, Easterbrook and Holt [42].

We have compiled a prototype benchmark by reviewing the model-checking
literature, including conference proceedings, journals, and tool distributions. It
is currently available as a technical report [3], but will soon be supported and
made editable as a collaborative web—database, so that everyone in the model-
checking community may contribute. Without the support of the community,
no benchmark can be successful. We hope that this paper stimulates discussion
on this topic within those in the community who are interested in verifying
asynchronous concurrent systems.



2

Requirements and Challenges

We start our quest towards a benchmark for model checkers of asynchronous con-
current systems by compiling its requirements and highlighting its challenges.
Given the importance of benchmarking, it is surprising that not much work on
its foundations has been published. One notable exception is a paper by Sim,
Easterbrook and Holt [42] which presents a theory for benchmarking and illus-
trates that theory by developing a benchmark for software reverse—engineering
tools. In the following, we first briefly re—visit this theory and, on this basis, then
discuss the challenges for designing our benchmark.

2.1 Benchmarking Theory

Sim et al. structure benchmarks into three components [42]:

1.

Motivating comparison. This component shall identify the overall pur-
pose of the benchmark, the technical comparison to be performed, and the
sought effect of the results to be obtained.

Task sample. This is the main component of the benchmark. It comprises
a set of examples to be used as representatives of the domain concerned.
Performance measures. This component states what kind of measure-
ments ought to be taken. The objective is to provide an overall view of the
relationship between various tools and technologies.

The theory also identifies seven requirements a benchmark needs to fulfill in
order to be successful:

1.

Accessibility. The benchmark shall be publicly available, which includes
the task sample as well as any experimental results conducted with this task
sample. The benchmark shall also be easy to understand and easy to use by
parties having different levels of expertise in empirical studies.
Affordability. The cost of using the benchmark, including the cost of human
effort and of software and hardware needed to collect the measurements, shall
be in proportion to the required benefits.

Clarity. The specification of the benchmark shall be concise and precise; it
shall not leave gaps for misinterpretation or exploitation of ambiguities.

. Relevance. The task sample represented in the benchmark shall have a

general scope and be representative of the domain of interest.

Solvability. It shall be possible to complete the task sample and conduct
the required performance measurements.

Portability. The benchmark shall be impartial in the sense that it does not
favour one tool or technique over another. It shall be abstract enough to be
portable to different tools and techniques.

Scalability. The task sample shall vary in such a way that it is applicable
to tools and techniques of different levels of maturity.

Our benchmark will follow the above structure and, after presenting it in Sec. 3,
we will evaluate in Sec. 4 whether we have met the requirements of Sim et al.



2.2 Challenges

Before prototyping a benchmark for model checkers of asynchronous concurrent
systems, we first identify several challenges for its development.

Modelling Language. Benchmarks must be portable between different model—-
checking tools. However, different tools have typically different languages for
representing systems. Regarding model checkers for asynchronous concurrent
systems, these languages range from implementation languages such as Java [22],
to high-level modelling languages such as Promela [25], to abstract specification
languages such as Petri nets [15].

As pointed out by Corbett et al. in [19], a first naive solution to the mod-
elling language problem would consist in the construction of models by hand,
but this is time—consuming and error—prone. Second, as proposed by Corbett
in [18], a natural alternative would be to express task samples in terms of finite—
state automata and then use automatic translations to the input languages of
the various model checkers. Similar ideas underly the Bandera toolkit [5] for
verifying Java programs and the Symbolic Analysis Laboratory (SAL) [40]. In
Bandera, the Java source code and the temporal specifications are translated
into an intermediate representation called Jimple, which is a sort of low—level
Java code. After being abstracted and sliced, this code is then translated into a
common representation called BIR which is used as input for supported model
checkers, such as for SPIN [25] and NuSMV [16]. SAL is a framework where
different verification techniques and tools for abstraction, theorem—proving and
model—checking are integrated. The modelling language of SAL resembles that of
SMV and may be used as target for transition—system—based translators. Other
intermediate languages employed in automated verification include Verimag’s
IF [6] and Berkeley’s CIL [36].

However, although it might be possible to generate equivalent translations so
that validity of involved properties is preserved, the translation process can still
blindly favour the performance of one particular tool over another. For example,
straightforwardly translating Petri nets to Promela would model places as global
variables and thus disable SPIN’s partial-order reduction algorithms. Moreover,
one of the main reasons for the existence of so diverse modelling languages
is that modelling asynchronous concurrent systems allows for many levels of
abstraction. Each language suits not only a particular level of abstraction but
also a particular application domain. It seems that defining a single language is
impossible. However, maybe one can agree on a three or four modelling languages
aimed at different levels of abstraction. This would still allow for the benchmark
to be portable and affordable.

As our benchmark should be considered as a first prototype, we believe that
it would be premature for us to make this important design decision regarding
modelling languages at this point of our work. We rather leave this issue open for
future discussion within the model-checking community and restrict ourselves
here to precisely describe rather than model systems. Our descriptions will be
accompanied with pointers to the literature where concrete models can be found,
and illustrated with figures depicting a system’s architecture.



Finally, there is of course also the issue of which temporal logic to choose for
modelling a system’s properties, and one of the great debates has been about
linear—time vs. branching—time temporal logics [17]. As stated in Appendix B
of [25], “in practice there is no measure that can reliably tell which method
can solve a given problem more efficiently.” We feel that it is thus sufficient to
classify temporal properties according to whether they describe safety, liveness
or fairness properties.

Performance criteria. The ultimate goal for comparing model-checking tools
is to establish a relationship between their merits with regard to performance and
to gain insights into the different model-checking techniques they implement.

The present literature typically compares tools in terms of CPU time and
memory usage which depend on the underlying computing platform. These cri-
teria are not very helpful in establishing a sense of relativeness between different
tools or techniques. More objective performance criteria can be employed when
focusing on a single model—checking technology, such as explicit—state model
checking or BDD—based symbolic model checking. In case of the former, one
may measure the generated state—space sizes and the number of transitions tra-
versed, and in the latter the peak and final number of BDD-nodes stored.

As for the modelling language challenge, we believe that a discussion within
the wider community is necessary to pin down which performance measures
ought to be taken. We believe that more objective criteria are needed, with
appropriate metrics for measurement. For our prototype benchmark we restrict
ourselves to reporting the measurements described in the literature.

Tools vs. techniques. Increasingly, model-checking tools employ not a sin-
gle but several techniques. For example, the popular NuSMV tool [16] supports
both BDD-based and SAT-based model checking, and SPIN implements a wide
range of optimisation techniques, from partial-order reduction to bit—state hash-
ing [25]. Thus, our benchmark should not blindly compare tools to each others.
Rather, results from benchmarking should specify which aspects of the tools are
considered and what options have been used. Many of today’s tools have an over-
whelming large number of command-line options that have a direct influence on
a tool’s performance and can be fine-tuned for any given case study.

Documentation. The description of the task sample must be clear and easy to
understand. Also, to be representative of the domain of asynchronous systems,
the benchmark shall include case studies from industry as well as academia.
Unfortunately, apart from widely cited examples such as the leader election pro-
tocol [39], our experience suggests that the literature lacks proper documentation
of reported cases studies. This is often due to space limitations when publishing
research papers. Additionally, and particularly for industrial case-studies, the
full models cannot be presented due to confidentiality agreements. To achieve
a proper documentation of any task sample, we believe that collaboration of
both academic researchers and industrial users of model—checking technology is
indispensable.



3 The Proposed Prototype Benchmark

This section defines a prototype benchmark for model-checking asynchronous
concurrent systems which we hope will trigger a wider discussion within the
model-checking community about benchmarking such systems.

3.1 Motivating Comparison

The benchmark shall support researchers in analysing the relative merits of
different tools and techniques for model-checking asynchronous concurrent sys-
tems. It shall also help practitioners in establishing an objective relationship
between the performance of alternative tools, so as to be able to choose the
right model checker for their application of interest.

3.2 Task Sample

In order to define an appropriate task sample for our benchmark, we have been
surveying the literature for case studies and reported experiments of comparing
model—checking tools and techniques for asynchronous systems. We encountered
a number of examples multiple times, albeit in different contexts. Our analysis
classified the published studies according to the following criteria:

Application domain. Asynchronous concurrent systems typically fall into one
of four domains: (i) network/communications protocols, (i¢) computer/-
mutex protocols, (ii¢) controllers, and (iv) distributed algorithms.

Types of communication and degree of coupling. Types of communica-
tion are shared variables (SV), handshake communication (HC), i.e., ren-
dezvous, and buffered communication (BC), i.e., communication through
buffered message channels. The degree of coupling of systems can be classi-
fied as either loose, i.e., communication is mainly between adjacent processes,
medium, i.e., communication is mainly between one process and the rest of
the model, or strong, i.e., most processes take part in the communication.

Scalability. Many of the models in our task sample are scalable, e.g., in the
number of processes participating in a protocol. This allows the models to
stress test today’s and future model checkers. Moreover, challenges could be
set up determining to what degree a model can be scaled so that a given
model checker can still manage to verify properties within given time and
memory constraints.

Size/growth. Scalable models can be classified in the growth of their state
space. The growth can be either linear (Lin.), polynomial (Pol.), or expo-
nential (Exp.). For instance, the state space of the GNU sliding window pro-
tocol [20] grows exponentially when increasing the window size. Non—scalable
models range from small, simple models like the alternating bit protocol, to
models of moderate complexity like the production cell [31,37], to large mod-
els like the traffic alert and collision avoidance system (TCAS II) [1]. In the
sequel, we write N/A for indicating that no information on a system’s state—
space size has been made available in the literature.



Properties. Properties being verified of a model may be categorised as safety,
liveness and fairness properties. Some verification techniques have been tai-
lored to deal with important specific safety and liveness properties, namely
deadlock or livelock, respectively.

Techniques. Model-checking techniques can be split into two branches: ez-
plicit model checking (Explicit) such as implemented in SPIN [25], and
implicit model checking including decision—-diagram-based (DD) and SAT-
based model checking (SAT) such as implemented in NuSMV [16]. Each of
these may be combined with further techniques, such as partial-order reduc-
tion [26] and disjunctive partitioning [12]. While this classification is satisfac-
tory for our prototype benchmark, it might need to be refined in the future
to accommodate new techniques as these emerge. At the moment we have
simply added a generic category “Others” to cover somewhat less popular
techniques, such as compositional model checking and symmetry reduction.

Significance. As an indication of the significance of a case study we firstly
considered the number of times it was cited in the literature. In some cases,
whole workshops were dedicated to the verification of a particular case study,
such as the production cell [31]. Other examples, e.g., the leader election
protocol [39], are frequently cited and studied by many researchers.
Secondly, we also checked whether systems have industrial significance, as
does, e.g., the space aircraft controller presented in [21]. Thirdly, we paid at-
tention to examples that showed interesting experimental results with model
checking tools. For instance, verifying the ITU-T multipoint communication
service led to improvements in the SPIN model checker [34].

So as to evenly populate the space defined by the above criteria, we have selected
the task sample summarised in Table 1 for our prototype benchmark.! We expect
the benchmark to evolve as the community gets more engaged in the topic of
benchmarking model checkers of asynchronous concurrent systems. Note that
some well-known systems have not been included, since these systems are already
represented by other systems in the task sample. As examples, consider the
process scheduling problem [24], the famous Peterson mutex algorithm [25], and
the circular queue problem [10]. The first system has no more than 300 reachable
states, whence we do not expect it to exhibit any substantial characteristics
in addition to the alternating bit protocol or the telephony model POTS. The
second system is a mutual exclusion protocol, of which many are included in
the task sample. Finally, reported experiments of model checking the circular
queue show that it exhibits the same properties as the included bounded buffer
example of [41].

Each system included in the task sample is documented following a simple
structure. The documentation starts with a brief informal introduction to the
system concerned. Whenever possible, the informal description is also illustrated
with a diagram, showing its abstract structure. Then, a summary of the system’s

! Note that purists of benchmarking theories might question whether “techniques”
should influence the choice of task sample. However, ignoring “techniques” might
lead to a biased benchmark, favouring one technology over another.



characteristics and a summary of selected experiments reported in the literature
is provided. Finally, there is space for any further remarks. For illustration, the
following is the description of the leader election protocol [39] in our task sample.

Table 1. The task sample.

System | Comm.| Scalability | Size| Properties| Techniques Significance

Network/Communication Protocols

Alternating Bit BC - 102 Deadlock |DD, Explic.+POR Citations
Protocol [18] Loose Liveness SAT, Others
GIOP [29] HC,BC | #Processes |N/A Safety Explic.4+POR Application
Medium Liveness Others
Deadlock
Livelock
GNU I-Protocol BC Window Size | Exp.| Deadlock | DD, Explic.4+POR Tools
[20] Loose Livelock Application
ITU-T Service SV, BC #Nodes N/A Safety Explic.4+POR Application
[34] Strong
SIS Protocol [13] BC - N/A Safety Explic. Application
Strong Liveness
Telephony Model| HC, BC - 10° Safety Explic. Tools
POTS [30] Medium Liveness Others
Deadlock
Computer/Mutex Protocols
Bakery SV #Customers | N/A Safety DD, SAT Citations
Algorithm [11] Strong Liveness Tools
Bounded Buffer SV Buffer Size |Exp. Safety DD, SAT Citations
Prod.—Consumer | Loose #Producers Liveness Tools
[41] #Consumers Application
Dining SV, HC |#Philosophers| N/A| Deadlock | DD, Explic.4+POR| Citations
Philosophers [2] Loose SAT, Others
Queens Problem SV #Queens Exp. Safety DD, Others Citations
Loose
Readers-Writers SV #Readers Pol. Safety DD, Explic.4+4POR| Citations
[18] Strong #Writers Liveness SAT
Deadlock
Sleeping Barber SV #Chairs N/A Safety DD, SAT Citations
2] Loose Livelock
Controllers
Cash Machine SV, BC #Tills N/A Safety Explic.4+POR Citations
[44] Medium #Users Liveness Application
Tools
CDMA Library | SV, HC #Mobiles N/A Safety Explic. Application
[14] Strong Liveness
Deadlock

continued on next page




continued from previous page
System Comm.| Scalability| Size| Properties Techniques Significance

Cyclic Scheduler HC #Cyclers | Exp. Deadlock | DD, Explic.4+POR| Citations

[35] Loose SAT

Gas Station [23] HC #Pumps | Exp. Safety DD, Explic.4+POR| Citations
Strong |#Customers Application

Production Cell HC — 1012 Safety Explic.4+POR Citations

[31] Loose Liveness Application

Space Craft SV #Properties| N/A Safety Explic.4+POR Application

Controller [21] Medium #Tasks

TCAS II [1] N/A - 1085 Safety DD Application

Distributed Algorithms

Cache Coherence| HC, BC | #Servers |Exp. Safety DD Citations

for Distributed [ Medium | #Clients

File System [46] #Files

Leader Election | HC, BC | #Processes | Pol. Safety DD, Explic.4+POR| Citations

[39] Medium Liveness Others

Documentation example. Leader Election Protocol — Introduction:

Depicted in Fig. 1, the leader
election protocol allows a ring
of N processes to elect a leader
through sending messages around
the ring. Each process randomly
chooses a number id, from a re-
stricted set of values, and sends
it around the ring. If there is a
unique id, then the process with
the maximum unique id is elected
as the leader. Otherwise, the elec-
tion step is repeated.

System characteristics:

Domain:
Communication:
Degree of coupling: Loose
Scalability:
Size/Growth:
Verified properties: Liveness

Selected experiments:

B

Fig. 1. Top view of the protocol.

Distributed Algorithms
Both handshake and buffered communication

Yes, in the number of processes
Polynomial

Reference| Technique Tool Source code
24 Explicit, partial-order reduction| SPIN N/A
32 Directed Model Checking HSF-SPIN|N/A

Aside. The protocol has also been studied elsewhere, but the couple of references
above are sufficient for illustrating our documentation style.



Reported Results:

In [24], two versions of the protocol are specified in Promela and verified using
SPIN, with 5 as the total number of processes and with partial-order reduction
enabled. The first version requires all processes to participate in the election right
from the beginning. In the second version, a process can decide to participate at
a later point. Two properties were verified for each version, one safety and one
liveness property. The number of reachable states is around 200.

In [32], the emphasis is on studying the results of combining directed model
checking with partial-order reduction. The protocol is specified in Promela and
verified for safety properties using HSF-SPIN. Results show that combining
directed—search strategies with partial-order reduction can lead to significant
improvements in terms of state—space size and run time. However, for the leader
election protocol, the tool was not able to verify the required safety property.

3.3 Performance Measure

Our prototype benchmark adopts a qualitative approach for comparing tools. As
illustrated in the above “Reported Results” section for the documentation of the
leader election protocol, we point out experiments from the literature and the
performance criteria they used. Then we report which tool or model-checking
technique proved higher in merit compared to the other tools or techniques
applied to the given example. For this initial stage of the development process of
our benchmark, the qualitative result can work as a guide for other researchers
who would like to experiment with the benchmark. Say, for example, that we
are interested in comparing a new model checker to SPIN. We can then use the
“Reported Results” sections in the task sample to identify the set of examples
where SPIN is held at high esteem and apply the new model checker to that
particular set of examples.

The problem with the proposed qualitative approach is that it allows for
picking subsets of the benchmark to experiment with. In turn, this could favour
some tools over others, contradicting the objectivity of benchmarking. Also,
tracking the cited experiments described in the literature requires some non-—
negligible effort. A better approach would be to provide a list of measurable
criteria and then report the performance of each model-checking tool according
to these criteria. However, as discussed in Sec. 2.2, defining these criteria and
providing the empirical data of experiments is a difficult task which requires
consensus and collaboration from the wider community.

4 Evaluation

We evaluate our work against both the challenges identified in Sec. 2.2 and the
requirements of the benchmarking theory of Sim et al. [42].
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4.1 Meeting the Identified Challenges

It is important to note that the above benchmark is intended as a prototype
only, which should provide a starting point for discussions among the model-
checking community. We thus deliberately tried to avoid early design decisions
and leave them open for broad discussions and agreements. In particular, the
proposed benchmark avoids commitments regarding both concrete languages
in which to model asynchronous concurrent systems and specific performance
measures which ought to be taken when conducting experiments.

As argued in Sec. 2.2 we believe that identifying a single modelling language
will prove difficult, if not impossible, given that model checking is used at var-
ious stages of the systems engineering life cycle, namely in the requirements,
design and testing stages. Instead, our task sample is described in plain English,
with pointers to the literature where formal models of each asynchronous sys-
tem model can be found. It is also equipped with a summary of each model’s
characteristics and highlights which model has been studied using which model-
checking technologies. This should satisfy both the academic researcher who,
e.g., can compare their work on a specific technology using that part of the task
sample to which this technology has already been studied by others, as well as
the user of model checkers who, e.g., can use the benchmark to identify which
technology seems to cope best with the characteristics of their applications at
hand.

Our prototype benchmark also leaves open the exact performance measures
to be adopted. The performance measures currently used in the literature are
either dependent on the deployment platform, such as absolute time and memory
measurements, or on the employed technology, such as counting the peak or
final number of BDD nodes, as discussed in Sec. 3.3. Instead, for each example
in the task list, we identify in the summary of “reported results” section the
experiments that have been given in the literature, regardless of the performance
measures used in these experiments. Also, the results from these experiments are
reported in a qualitative rather than a quantitative fashion. In this format, the
prototype benchmark can not only be used as a guide for researchers but also
remains generic and easy to update with a formal definition of the performance
measures’ component.

4.2 Meeting the Benchmarking Requirements

As summarised in Sec. 2.1, the benchmarking theory of Sim et al. [42] states
seven essential requirements for the success of a benchmark. In the following we
evaluate our prototype benchmark against each of these requirements.

Accessibility. At the moment our prototype benchmark will only be available
online as a technical report [3]. As explained in Sec. 3.2, the task sample is
illustrated through text and graphical representations, with appropriate refer-
ences to the literature. Thus, the prototype benchmark is publicly accessible and
easy to understand. However, in this format it is not straightforward for other
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researchers to contribute to the benchmark in terms of updating experimen-
tal results or modifying the task sample. We are currently addressing this issue
through the implementation of a collaborative web—database for the benchmark,
which will be completed by April 2006. This will allow members of the commu-
nity to edit the benchmark’s content, much as the popular online encyclopedia
Wikipedia [45] does.

Affordability. The prototype benchmark identifies experiments from the lit-
erature and points out the results and, if available, the source code necessary
for repeating these experiments. Unfortunately, chasing the provided citations
or web links can incur a significant price in terms of time and effort. However,
using the prototype benchmark as a starting point is much easier than starting
from scratch, as the literature survey and reported results are already provided.
With its implementation as a collaborative web—database, using the benchmark
will become more cost—effective.

Clarity. Despite our efforts to be precise, we currently provide no formal defini-
tions of the terms we use but assume mutual understanding. Future work shall
support the benchmark with a dictionary of terminology.

Relevance. The proposed task sample includes case studies from both academia
and industry. Also, these case studies have been the subject of experiments for
various and widely used model checkers, implementing different model—checking
techniques. Thus, the prototype benchmark has a global scope and can be con-
sidered representative of its domain, i.e., asynchronous concurrent systems.

Solvability. This criteria is trivially satisfied for our prototype benchmark since
all problems in the task sample have been studied in the literature before, using
one or more model—checking techniques and tools.

Portability. The proposed task sample includes case studies that vary in sizes,
types of communication, and application domains. Also, the benchmark ab-
stracts away from specifying the modelling language for the task sample. To-
gether, these give the benchmark an impartial view of the domain and allow it
to be used with different model-checking tools and techniques.

Scalability. Again, our task sample includes case studies that vary in sizes.
Many of them are parameterised, and their complexities grow when increasing
the sizes of their input parameters. Thus, our benchmark can be tuned to suit
tools and techniques of different levels of maturity, not only today but also in
the future when both model checkers and work stations will have evolved.

5 Conclusions & Future Work

Benchmarks are an effective means for examining and evaluating technologies,
as is proved by the ISCAS benchmarks [7,8] for model checkers of synchronous
systems and particularly digital circuits. Our proposed benchmark focuses in-
stead on asynchronous concurrent systems. This subsumes the important class of
communications protocols and distributed controllers, for which there are many
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reported experiments on model—checking technologies but no obvious ways for
comparing and verifying their results.

This paper discussed the challenges for developing a widely—agreeable bench-
mark for model checkers of asynchronous concurrent systems and introduced and
evaluated an according prototype benchmark. In contrast to related work [10, 18,
28], our prototype benchmark follows a methodical definition according to a clear
benchmarking theory [42]. The proposed task sample ranges across various ap-
plication domains, satisfies a variety of characteristics, and includes a summary
of relevant experiments reported in the literature. Moreover, many of the models
included in the task sample are scalable so that the benchmark can challenge
both present and future model checkers.

Our prototype benchmark is intended for use by academic researchers and in-
dustrial developers. In academia, the benchmark should primarily be employed
for validating research results, thus leading to a more transparent approach
of conducting experiments and helping to accumulate insight into the relative
strengths of the many model-checking technologies available. We believe that
this will eventually lead to higher—quality research papers, with robust and ver-
ifiable evaluations. Industrial developers are likely to use the benchmark for
selecting the right model-checking tool or technique for a given development
project, comparing the characteristics of the application at hand to those of the
system models in the task sample, and checking which technology is known to
be the most promising one for that application.

Future work. We hope that our work will initiate a constructive dialogue which
will eventually result in a standardised benchmark with a representative task
sample and a well-defined set of performance criteria. To facilitate this process,
our benchmark must allow for truly collaborative efforts.

We are currently implementing a wiki-based web—accessible database for
managing the benchmark [45], which should be available by April 2006. Users
can then remotely edit the task sample, update reports on experimental results
and add pointers to the literature. Of course, traditional database functionalities
would also be supported, such as searching the benchmark or restricting the view
to those system models that satisfy a particular characteristic. This will allow
our prototype benchmark to go further beyond being a documented collection
of case studies. As noted in [42], the benchmark will then be able to act as a
tool for achieving a more cohesive understanding of the domain, a more rigorous
examination of research results, and faster technical progress.

At the recent “Satisfiability-Modulo—Theories Competition (SMT-COMP)”
event affiliated with CAV 2005, a SMT solver competition was carried out. Tools
needed to be able to accept given task samples coded in a standard format [43],
and performance criteria included giving penalty points to a tool that solved
a problem incorrectly. We believe that a similar competition should be carried
out for model checking tools, probably split into different categories, depending
whether digital circuits, software or timed systems are model checked. This would
further encourage faster and more verifiable progress within the community.
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Sender Receiver

Fig. 1. An overview of the alternating bit protocol.

A Case Studies

We here give the full description, together with selected reported results, for
the “task sample” proposed in our prototype benchmark. Although the model
checking domain enjoys a vast literature, experiments with cases studies are
rarely reported with full evaluation results; experiments that compare several
tools are even more scarce. We certainly cannot claim full cover of the literature
for the results we cite here. However, our selected experiments do enjoy the
application of several tools to one or more examples, or the application of one tool
to several examples. Otherwise, i.e. where one tools is applied to one example,
the reported experiment is selected because, as in A.4 and A.13 for example, the
experiment provides more insights into the model checking technology than just
“... the tools was capable of finding a bug.”.

A.1 Alternating Bit Protocol

Introduction: The alternating bit protocol is simple and frequently cited exam-
ple for transferring messages in one direction between a two points of a network.
As depicted in Figure 1 the protocol consists of a sender, a receiver, and two
lossy channels. A message is sent continuously, with the same identification num-
ber (0 or 1) until an acknowledgment, containing that number, is received. At
this point, the sender flips the identification number and starts sending the next
message.

System characteristics:

Domain: Network/Communication protocols
Communication: Buffered communication

Degree of coupling: Loose

Scalability: —

Size/Growth: 100

Reported verified properties: Liveness and deadlock-freedom
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Selected experiments:

Reference| Technique Tool Source code
16 Explicit, partial-order reduction| SPIN N/A

16 BDD-based SMV N/A

16 Inequality Necessary Conditions| INCA N/A

23 Directed Model Checking HSF-SPIN | N/A

6] BDD-based SMV, ALV| [6]

Reported Results:

— In [16], the problem is modelled in Ada [5] and then automatically translated
into the appropriate input language for the three tools SMV [36], SPIN [27]
and INCA [3,17]. The tools are used for detecting deadlock in the model,
and are compared according to the consumption of memory and CPU time.
The reported results for the alternating bit protocol are:

SPIN SPIN+PO SMV INCA

#States|Mem(mb)|Time(s)|Mem(mb)|Time(s) |Mem(mb)|Time(s)|Mem(mb)|Time(s)
113 |1.29 0.67 |1.71 0.84 |1.70 1.03 |7.13 7.23

Experiments were conducted on a SPARCstation 10 Model 51 with 96 MB
of memory. The memory is measured in MB and CPU time is measured in
seconds.

— In [23], the emphasis is on studying the results of incorporating heuristics
search algorithms into the explicit model checker SPIN. The protocol is
specified in Promela and verified for LTL-specified liveness properties using
HSF-SPIN. Results showed that HSF—SPIN was more efficient than SPIN in
verifying liveness properties for the alternating bit protocol. However, this
result is not conclusive as experiments with other examples showed that
heuristics can improve the search process only if they have very specific
knowledge of the system considered.

— In [6], the main objective is the efficient construction of BDD representa-
tions for integer arithmetic constraints. An algorithm for generating BDDs
for linear arithmetic constraints is proposed and shown to produce BDDs
with sizes that are linear in the number of variables involved and the num-
ber of bits used to encode each variable. However, that result was only valid
when all the variables had the same bounds, or different bounds but with all
are powers of two. When the variables have different bounds, which are not
necessarily power of two, the size of the generated BDDs grows exponentially
as the number of variables is increased. Consequently, as noted in [6], this
suggests that if the choice of bounds does not compromise the specification
then it may be a good idea to choose these bounds as powers of two.

The proposed algorithm is incorporated into the Action Language Verifier
(ALV) tool [10]. Then, using the alternating bit protocol and other exam-
ples as a testbed, the performance of ALV is compared to three different
implementations of SMV (CMU SMV version 2.5.4.3, Cadence SMV version
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08-20-01p2, and NuSMV version 2). The experiments verified both safety and
liveness properties and were conducted on SUN ULTRA 10 workstation with
678 MB of memory, running SunOs 5.7. The results have shown that, the
recorded execution times for the three implementations of SMV grow expo-
nentially in terms of the size the involved variables. ALV, on the other hand,
has shown linear growth in execution time. Nevertheless, other experiments
in [6] have shown that the size of BDDs generated by ALV grows exponen-
tially if the involved variables have different bounds and these bounds are
not all power of two.

A.2 GIOP

Introduction: The Common Object Request Broker Architecture (CORBA) is
a standard defined by the Object Management Group (OMG) for communica-
tion between distributed applications over heterogeneous networks. Central to
CORBA is the implementation of Object Request Brokers (ORB) which enables
client /server object interaction between applications. Communications between
ORBs are independent of the implementation language and the platform of the
communicating applications. The standard protocol for achieving this, as defined
by CORBA, is the General Inter-ORB Protocol (GIOP).

System characteristics:

Domain: Network/Communication protocols
Communication: Handshake and buffered communication
Degree of coupling: Medium

Scalability: Yes, in the number of processes
Size/Growth: N/A

Reported verified properties: Safety, liveness, deadlock- and livelock-freedom

Selected experiments:

Reference| Technique Tool Source code
30,31 Explicit, partial-order reduction| SPIN Online
23,34] | Directed Model Checking HSF-SPIN|N/A

Reported Results:

— In [30, 31], the GIOP protocol is verified, using SPIN, for LTL-specified safety
and liveness properties, including absence of deadlock and livelock. The dif-
ference between [30] and [31] is in the modelling process. In [30] a hand-built
model of GIOP was developed and validated in Promela, and then verified
using SPIN; the model assumes two servers processes, two agents, two users,
and one client. In [31] an equivalent model is presented in the v-Promela lan-
guage, which is a graphical extension of Promela. Then the Visual Interface
to Promela (VIP) is used to translate the graphical model into Promela code.
Experiments for verifying the model properties have shown that the VIP gen-
erated code requires larger state vectors, but results in much smaller state
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Fig. 2. An overview of the GNU i-protocol.

spaces. The improved performance of the VIP is attributed by [31] to two
man reasons. First, the fact that VIP generated code uses goto statements,
rather than an event loop construct (in the hand-built model) in which con-
trol states are represented through variables. Second, the fact that channels
are all represented as global variables in the hand-built model, whereas they
are represented as local variables (of the Env process) in the VIP generated
code.

— In [23, 34], the model of GIOP (presented in [30]) is used and verified for LTL-
specified properties using HSF-SPIN. In [34], the emphasis is on studying
the results of incorporating heuristics search algorithms into SPIN. In that
work the GIOP protocol is verified for safety properties. In [23] the emphasis
is on studying the effect of combining directed model checking with partial-
order reduction; the GIOP protocol is verified for absence of deadlock and for
other liveness properties. Results showed that HSF-SPIN was more efficient
than SPIN in verifying safety and liveness properties for the GIOP protocol.
However, this result is not conclusive as experiments with other examples
showed that heuristics can improve the search process only if they have very
specific knowledge of the system considered.

A.3 GNU I-Protocol

Introduction: The GNU i-protocol is a sliding window protocol which allow for
remote execution of commands and transfer of data between Unix computers.
The protocol is optimised for reducing the acknowledgment and retransmission
traffic. As depicted in Figure 2, the protocol can be modelled as an asynchronous
system comprising a sender process, a receiver process, and two (lossy) FIFO
buffer processes. One buffer is used by the sender process to send the data
packets to, and receives acknowledgments from, the receiver process. The other
buffer is used by the receiver process to receive data packets from, and send
acknowledgments to, the sender process. If the window size for the i-protocol
is W, then the sender process can send up to W contiguous packets without
waiting for acknowledgments from the receiver process.
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System characteristics:

Domain: Network/Communication protocols
Communication: Buffered communication

Degree of coupling: Loose

Scalability: Yes, in the window-size
Size/Growth: Exponential

Reported verified properties: Deadlock- and livelock-freedom

Selected experiments:

Reference| Technique Tool Source code

[22] Explicit Concurrency Factory,| Online
Murp, XMC

22 BDD-based COSPAN, SMV Online

22 Explicit, partial-order reduction| SPIN Online

[28] Explicit, partial-order reduction| SPIN N/A

Reported Results:

— In [22], the i-protocol is used as a testbed for comparing six model check-
ers: The Concurrency Factory [15] COSPAN [25] (version 8.15), Mury [20]
(version 3), SMV (version 2.4), SPIN (version 2.9.7), and XMC [42]. Three
parameters are toyed with in order to obtain eight variations of the protocol;
the existence/absence of a livelock error, the window size (1 or 2), and the
existence/absence of message corruption during communication. The proto-
col model is written for each of the tools in its own input language separately.
The tools are then used to detect a livelock error in an erroneous version
of the protocol. Afterwards, with the livelock error fixed, experiments with
tools are repeated to verify that the new version of the protocol is both
livelock- and deadlock-free. Experiments are then repeated with W = 1 and
W = 2 and with buffers that can only drop messages versus ones that can
also corrupt messages. The performance of tools is measured in terms of the
number of states explored, the number of transitions traversed, CPU time
usage and memory usage. Experimental results have shown that the explicit
model checkers Murg and XMC have performed better than all the other
tools, in terms of completing all experiments successfully, and efficient use
of memory and CPU time. Next performances are the SPIN and COSPAN
tools. The poorest performance was the SMV tool — though it showed efficient
memory-usage on all experiment with W = 1, the tool failed to complete in
a reasonable amount of time for W = 2.

— In [28] the experiments in [22] are repeated using the same version of SPIN
(2.9.7) and the same Promela model of the i-protocol, but this time with
two corrections of the way SPIN is used. Namely, the “stacksize” parameter
reduced, and the loss-less COLLAPSE compression option is enabled. The
result is that SPIN outperformed XMC in six of the eight variations of the
i-protocol. Editing the Promela model and adopting some of the compression
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techniques used in XMC into a new version of SPIN (3.3.0) has then resulted
in the latter outperforming XMC in all the eight variations of the i-protocol.

Further Comments: So far it looks like explicit model checking outperforms

symbolic model checking (more precisely, SPIN outperforms SMV) in verifying
(asynchronous) network/communication protocols

A.4 ITU-T Service

Introduction:

Overview The ITUT Multipoint Communication Service (MCS) is a multiparty
communication protocol which provides support for interactive multimedia con-
ferencing applications. The protocol allows applications to send data, using a
single primitive, to one or more destinations. Depicted in Figure 3 The MCS is
organised around the concepts of domains. Each domain groups a set of client
applications that exchange data within that domain. The dynamic construction
and deconstruction of a domain is the responsibility of the domain controller.
For example, a domain is created when the controllers of two MCS providers
agree on a new connection between two clients — a client can be part of dif-
ferent domains. A client can exchange data with other clients in the domains
it is attached to. This multipoint communication is supported with multipoint
channels, and messages are propagated through the whole tree structure of the
domain to which the client is attached.
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System characteristics:

Domain: Network/Communication protocols
Communication: Shared variables and buffered communication
Degree of coupling: Strong

Scalability: Yes, in the number of nodes

Size/Growth: N/A

Reported verified properties: Safety and liveness

Selected experiments:

Reference| Technique Tool | Source code
[37] Explicit, partial-order reduction| SPIN| Online

Reported Results:

— In [37], a simplified version of the MCS protocol is specified in Promela,
and verified for LTL-specified safety properties using SPIN (version 2.8.4).
However, more than just verifying the protocol, the work in [37] aimed at
evaluating the capabilities of Promela and SPIN for specifying and verify-
ing multi-point communication protocols. Experiments showed that SPIN is
suitable for detecting errors in such protocols. However the dynamic nature
of the MCS protocol has lead to unnecessarily large code in Promela. As a
result, some extensions to Promela have been proposed in order to facilitate
direct representation of dynamically created processes.

A.5 SIS Protocol

Introduction: The Service Incident-exchange Standard (SIS) [19] is communi-
cation protocol that allows incident tracking systems to share data and facilitate
resolutions. The basic idea is to represent the various status of a service request
as a finite state machine (FSM). Copies of this FSM can then be shared between
service requesters and providers so that these parties can keep track of the re-
quest at various points of time. Of course, the requesters and providers have to
maintain a consistent view of the FSM. Figure 4 provides an overview of the SIS
protocol. Each of the Requester and Provider consists of two components:

— The Client: represented by RClient and PClient. The client is responsible
for transmitting transaction requests.

— The Virtual Machine (VM): represented by RVM and PVM. The VM rep-
resents the Requester’s(/Provider’s) copy of the request FSM. Each VM is
responsible for processing transaction requests from the corresponding client.
To maintain consistency between the two VM, when one of them successfully
processes a transaction request from the client, it then issues a request for
an appropriate state change in the other VM.
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Fig. 4. An overview of the SIS protocol.

System characteristics:

Domain: Network /Communication protocols
Communication: Buffered communication

Degree of coupling: Strong

Scalability: —

Size/Growth: N/A

Reported verified properties: Safety

Selected experiments:

Reference| Technique Tool Source code

[11] Explicit Model Checking| PIPER, SPIN| N/A

Reported Results:

— The work in [11] focuses on automatic extraction of abstract CCS models
from m-calculus specifications, using annotations in the form of type sig-
natures, and the verification of these CCS models using model checking
techniques. The SIS is specified as a set of communicating 7 processes, with
corresponding type signatures. The properties of the system are states as
LTL formulae. The PIPER tool (a back end to the model checker SPIN) is
then used to automatically extract the abstract CCS processes, as well as
necessary subtyping proof obligations. PIPER then automatically translate
the CCS models into Promela specifications. Finally, the SPIN tool is used
to verify the temporal properties and to discharge the subtyping proof obli-
gations — the proof obligations are discharged through simulations between
the CCS processes. No specific verification results, e.g. memory consumption
or size of generates state space, are given in [11].
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A.6 Telephony Model POTS

Introduction: Plain Old Telephone Service (POTS) is the analogue telephone
service which was available prior to the introduction of electronic telephone ex-
changes. In the POTS model, users are connected through wires to a nearby
central office. The central office acts as a switch point, and is connected to other
central offices and long-distance facilities. A simple POTS, consisting of two tele-
phones and two switch points, is illustrated in Figure 5. Respectively, the User
and PhoneHandler processes represent the telephones and the call processing
software at the switch points. Each User process communicates with its desig-
nated PhoneHandler. A PhoneHandler process responds to events from its User
and communicates with the other PhoneHandler to establish connections.

System characteristics:

Domain: Network/Communication protocols
Communication: Handshake and buffered communication
Degree of coupling: Medium

Scalability: -

Size/Growth: 10°

Reported verified properties: Safety, liveness, and deadlock-freedom

Selected experiments:

Reference| Technique Tool Source code
[31] Explicit, partial-order reduction| SPIN N/A
[23,34] | Directed Model Checking HSF-SPIN| N/A

Reported Results:

— In [31], the POTS system is verified, using SPIN, for LTL-specified safety
and liveness properties, including absence of deadlock and livelock. The sys-
tem model is represented in the v-Promela language, a graphical extension
of Promela. Then the Visual Interface to Promela (VIP) is used to translate
the graphical model into Promela code. Experiments have revealed deadlock
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error, and that the model can only satisfies trivial liveness properties. How-
ever, it was possible to verify that the model can indeed establish a phone
call; that is, “there exists a scenario in which both PhoneHandler processes
are in the respective conversation states”.

— In [23,34], the model of POTS presented in [31] is used and verified for
LTL-specified safety properties using HSF-SPIN. In [34], the emphasis is on
studying the results of incorporating heuristics search algorithms into SPIN.
In [23] the emphasis is on studying the effect of combining directed model
checking with partial-order reduction. Results showed that HSF-SPIN was
more efficient than SPIN in verifying the safety properties for the POTS
model. However, this result is not conclusive as experiments with other ex-
amples showed that heuristics can improve the search process only if they
have very specific knowledge of the system considered.

A.7 Bakery Algorithm

Introduction: The algorithm solves the mutual exclusion problem for P, .., Py
processes accessing a shared critical section of code. Each process P; has a shared
number n; that is readable by all other processes but writeable only by P;. Ini-
tially all the numbers nq,..,ny are equal to zero. When a process P; wants to
access the critical section it sets n; to be greater than all other n; (j # ). P;
then waits for all other processes that has a lower number n;(# 0) — a tiebreaker
is resolved for the favour of the process with the lower id. Finally, P; accesses
the critical section; upon leaving the process sets n; back to zero.

System characteristics:

Domain: Computer /Mutex Protocols
Communication: Shared variable

Degree of coupling: Strong

Scalability: Yes, in the number of processes
Size/Growth: N/A

Reported verified properties: Safety and liveness

Selected experiments:

Reference| Technique Tool Source code
7] BDD-based SMV N/A

7,9] Constraint-based| OMC N/A

4 Implicit SAL Online

4 BDD-based SAL Online

6 BDD-based SMV, ALV| [6]

Reported Results:

— In [7,9], the main objective is the application of constraint-based model
checking (which uses arithmetic constraints as a symbolic representations)
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for verifying concurrent systems with unbounded integer variables. In [9]
the bakery algorithm is verified for safety and liveness properties using the
Omega library model checker (OMC) [32,41]. The OMC tool uses Presburger
arithmetic (integer arithmetic without multiplication) [8, 9] constraints as its
underlying state representation and transition relations. In [7], with memory
usage and execution time as the criteria, the performance of OMC is com-
pared to the BDD-based model checker SMV for verifying safety properties
of the bakery algorithm. Experiments were conducted on two stages.

In the first stage, with only two concurrent processes, the performance of the
tools was studied against the increase in the domain range of the state vari-
ables. Results have shown that the performance of the OMC tool remains
constant with respect to increasing variable domains. The execution time
and the memory usage of SMV, however, increased exponentially with the
number of boolean variables required for the binary encoding of each input
variable. The experiments were repeated again but with more appropriate
encoding of variable ordering in SMV. As a result, the execution time and
the memory usage of SMV were reduced to a linear increase with respect to
the number of boolean variables required for the binary encoding of input
variables.

In the second stage the performance of SMV and OMC was studied with
respect to increasing the number of concurrent processes in the algorithm,
from 2 to 4. This time the performance of both SMV and OMC deteriorated
significantly, with SMV having more graceful degradation than OMC. For 4
processes, SMV has finished in less than 20 seconds, while one hour was not
enough for the OMC tool.

According to [7], the overall experimental results with SMV and OMC sug-
gest that constraint-based model checking can outperform BDD-based model
checking for verifying asynchronous concurrent systems with finite but large
integer domains.

In [4], John Rushby at SRI has prepared a tutorial on different methods of
formal analysis, illustrating their strengths and limitations. The tutorial is
mainly conducted around the PVS modelling and verification system, but
as stated by the author of the tutorial, it is still valid in the framework
of similar verification tools. In the tutorial, the Bakery algorithm problem
is modelled in the SAL intermediate language and different formal analysis
techniques such as finite-state model checking by explicit state enumeration
and symbolic BDDs-based methods are illustrated.

In [6], the main objective is the efficient construction of BDD representa-
tions for integer arithmetic constraints. An algorithm for generating BDDs
for linear arithmetic constraints is proposed and shown to produce BDDs
with sizes that are linear in the number of variables involved and the num-
ber of bits used to encode each variable. However, that result was only valid
when all the variables had the same bounds, or different bounds but with all
are powers of two. When the variables have different bounds, which are not
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necessarily power of two, the size of the generated BDDs grows exponentially
as the number of variables is increased. Consequently, as noted in [6], this
suggests that if the choice of bounds does not compromise the specification
then it may be a good idea to choose these bounds as powers of two.

The proposed algorithm is incorporated into the Action Language Verifier
(ALV) tool [10]. Then, using the bakery algorithm and other examples as a
testbed, the performance of ALV is compared to three different implementa-
tions of SMV (CMU SMYV version 2.5.4.3, Cadence SMV version 08-20-01p2,
and NuSMV version 2). The experiments verified both safety and liveness
properties and were conducted on SUN ULTRA 10 workstation with 678 MB
of memory, running SunOs 5.7. The results have shown that, the recorded
execution times for the three implementations of SMV grow exponentially in
terms of the size the involved variables. ALV, on the other hand, has shown
linear growth in execution time. Nevertheless, other experiments in [6] have
shown that the size of BDDs generated by ALV grows exponentially if the
involved variables have different bounds and these bounds are not all power
of two.

A.8 Bounded-Buffer Producer-Consumer Problem

Introduction: A bounded buffer is a queue with limited size. The buffer sup-
ports a write operation, in which a producer can insert a data item into the
queue. The buffer also supports a read operation, in which a consumer can re-
move a data item from the queue. The buffer must not overflow, thus a producer
cannot add items if the buffer is full. Also, a consumer should not be allowed
to read from the queue if the buffer is empty. To achieve these functionalities,
proper synchronisation should be provided between the producer and consumer
for accessing the buffer. The problem is even more interesting when there are
more than one producer and/or consumer.

System characteristics:

Domain: Computer /Mutex Protocols
Communication: Shared variable
Degree of coupling: Loose
Scalability: Yes, in the buffer size and

the number of producers/consumers
Size/Growth: Exponential

Reported verified properties: Safety and liveness

Selected experiments:

Reference| Technique Tool Source code
7] BDD-based SMV N/A

7,9] Constraint-based| OMC N/A

6] BDD-based | SMV, ALV] [6]
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Reported Results:

— In [7,9], the main objective is the application of constraint-based model
checking (which uses arithmetic constraints as a symbolic representations)
for verifying concurrent systems with unbounded integer variables. In [9]
the bakery algorithm is verified for safety and liveness properties using the
Omega library model checker (OMC) [32,41]. The OMC tool uses Presburger
arithmetic (integer arithmetic without multiplication) [8, 9] constraints as its
underlying state representation and transition relations. In [7], with memory
usage and execution time as the criteria, the performance of OMC is com-
pared to the BDD-based model checker SMV for verifying safety properties
of the bakery algorithm.

The performance of the tools was studied against the increase in the domain

range of the state variables. Results have shown that the performance of
the OMC tool did not remain constant, but was not greatly affected by the
increasing the domain ranges. The execution time and the memory usage of
SMV, however, increased exponentially with the number of boolean variables
required for the binary encoding of each input variable. The experiments were
repeated again but with more appropriate encoding of variable ordering in
SMV. As a result, the execution time and the memory usage of SMV were
reduced to a linear increase, with respect to the number of boolean variables
required for the binary encoding of input variables. Though it generally out-
performed SMV for the bounded buffer, the OMC tool did not converge (for
a whole hour) when attempting to verify certain safety properties. Accord-
ing to [7], the overall experimental results with SMV and OMC suggest that
constraint-based model checking can outperform BDD-based model checking
for verifying asynchronous concurrent systems with finite but large integer
domains.

— In [6], the main objective is the efficient construction of BDD representa-
tions for integer arithmetic constraints. An algorithm for generating BDDs
for linear arithmetic constraints is proposed and shown to produce BDDs
with sizes that are linear in the number of variables involved and the num-
ber of bits used to encode each variable. However, that result was only valid
when all the variables had the same bounds, or different bounds but with all
are powers of two. When the variables have different bounds, which are not
necessarily power of two, the size of the generated BDDs grows exponentially
as the number of variables is increased. Consequently, as noted in [6], this
suggests that if the choice of bounds does not compromise the specification
then it may be a good idea to choose these bounds as powers of two.

The proposed algorithm is incorporated into the Action Language Verifier
(ALV) tool [10]. Then, using the producer-consumer problem and other ex-
amples as a testbed, the performance of ALV is compared to three different
implementations of SMV (CMU SMV version 2.5.4.3, Cadence SMV version
08-20-01p2, and NuSMV version 2). The experiments verified both safety and
liveness properties and were conducted on SUN ULTRA 10 workstation with
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Fig. 6. A view of the dining philosophers problem, N = 5

678 MB of memory, running SunOs 5.7. The results have shown that, the
recorded execution times for the three implementations of SMV grow expo-
nentially in terms of the size the involved variables. ALV, on the other hand,
has shown linear growth in execution time. Nevertheless, other experiments
in [6] have shown that the size of BDDs generated by ALV grows exponen-
tially if the involved variables have different bounds and these bounds are
not all power of two.

A.9 Dining Philosophers

Introduction: This is probably the most reported case-study in the literature
of Concurrency Theory. The problem consists of N philosophers sitting at a
table. Between each two philosophers, there is a single stick. In order to eat,
a philosopher must pick the sticks on both sides. A problem can arise if each
philosopher picks the stick on the right, then waits for the stick on the left. In
such case a deadlock occurs and all philosophers will starve.

System characteristics:

Domain: Computer /Mutex Protocols

Communication: Shared variable and handshake communication
Degree of coupling: Loose

Scalability: Yes, in the number of philosophers
Size/Growth: N/A

Reported verified properties: Deadlock-freedom

Selected experiments:

Reference| Technique Tool | Source code
[16] Explicit, partial-order reduction| SPIN | N/A
16 BDD-based SMV |N/A
16 Inequality Necessary Conditions| INCA|N/A
[14] MDD-based [13] |N/A
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Reported Results:

— In [16], the problem is modelled in Ada [5] and then automatically translated
into the appropriate input language for the three tools SMV [36], SPIN [27]
and INCA [3,17]. The tools are used for detecting deadlock in the model,
and are compared according to the growth of resources consumed as the
example is scaled up. The reported results can be summarised as follows:

Criteria |Performance, in decreasing order
Growth of consumed resources|INCA, SMV, SPIN+PO, SPIN

— The work reported in [14] presents an MDD-based algorithm, called satura-
tion, for generating state spaces. Implemented in SMART [13], the saturation
algorithm was applied to the dining philosopher problem, as well as a suite
of other examples. Reported results [14] have shown that the saturation al-
gorithm outperforms traditional BDD-based techniques [35] for generating
state spaces, in terms of memory and execution time efficiency.

A.10 Queens Problem

Introduction: The N queens problem requires to find a way to position N
queens on a N x N chess board such that they do not attack each other.

System characteristics:

Domain: Computer /Mutex Protocols
Communication: Shared variable

Degree of coupling: Loose

Scalability: Yes, in the number of queens
Size/Growth: Exponential

Reported verified properties: Safety

Selected experiments:

Reference| Technique Tool Source code
14 MDD-based SMART|N/A

21 MDD-based, Symmetry| SPIN Online

21 Constraint-based SPIN Online

Reported Results:

— The work reported in [14] presents an MDD-based algorithm, called satura-
tion, for generating state spaces. Implemented in SMART [13], the satura-
tion algorithm was applied to the dining philosopher problem, as well as a
suite of other examples. The criteria considered for the experiments were the
peak and final number of MDD nodes, as well as the CPU time required for
the state-space generation. Compared to other examples in [14], the queens’
problem was the most challenging and had the poorest performance of the
saturation algorithm. Nonetheless, results showed that even in that case the
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saturation algorithm outperformed traditional BDD-based techniques [35],
as the algorithm was substantially faster and required less nodes.

— In [21] the n—queens problem is modelled in Promela, and then the SPIN
model checker is used to find all the possible solutions. The paper not only
compares the use of symmetry reduction in constraint processing and model
checking, but shows how model checking with symmetry reduction outper-
forms model checking for the particular example of the n—queens. Some re-
sults on the number of queens, number of solutions found, number of states
searched and time and memory used are presented for the symmetric case.

A.11 Readers-Writers Problem

Introduction: The readers-writers problem often rises in data bases systems.
There are a number of reader and writers processes that can access the database.
Several readers can be actively reading at the same time. However, if one process
is writing then no other readers or writers can share access to the database.

System characteristics:

Domain: Computer /Mutex Protocols
Communication: Shared variable

Degree of coupling: Strong

Scalability: Yes, in the number of readers/writers
Size/Growth: Polynomial

Reported verified properties: Safety

Selected experiments:

Reference| Technique Tool | Source code
[16] Explicit, partial-order reduction| SPIN | N/A
16 BDD-based SMV |N/A
16 Inequality Necessary Conditions| INCA|N/A
7] BDD-based SMV |N/A
7,9] Constraint-based OMC|N/A

Reported Results:

— In [16], the problem is modelled in Ada [5] and then automatically translated
into the appropriate input language for the three tools SMV [36], SPIN [27]
and INCA [3,17]. The tools are used for detecting deadlock in the model,
and are compared according to the growth of resources consumed as the ex-
ample is scaled up. The following table shows the time and memory growth
rate for each of the tools as the number of readers (= number of writers) is
increased.

SPIN |SPIN+PO| SMV INCA
Mem|Time|Mem|Time|Mem|Time|Mem|Time

94 |10.2{10.9 (14.0 |04 |15 (1.4 |14
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Surprisingly perhaps, SPIN+PO exhibited higher growth rates than SPIN.
This, as noted in [16], is mainly due to the strong coupling of communica-
tions in the readers-writers problem; all processes have to synchronise with
a controller task before (and when finished) accessing the database.

— In [7], the main objective is the comparison between constraint-based model
checking (which uses arithmetic constraints as a symbolic representations)
and traditional BDD-based model checking. The readers-writers problem,
among other examples, is modelled and verified for safety-properties using
the Omega library model checker (OMC) [32,41] and the SMV tool. OMC
uses Presburger arithmetic (integer arithmetic without multiplication) [8,9]
constraints as its underlying state representation and transition relations,
whereas SMV uses BDD for binary encoding of state representation and
transition relations. To compare OMC and SMV, 16 different instances of the
readers-writers model were generated. Then, the performance of the two tools
was measured in terms of the execution time and memory usage required
to verify the safety properties considered. Initial results showed that the
execution time and the memory usage of SMV increased exponentially as
the model is scaled up. The experiments were repeated again but with more
appropriate encoding of variable ordering in SMV. As a result, the execution
time and the memory usage of SMV were reduced to a linear increase. In
both cases, however, the performance of OMC was always better than the
SMV tool.

A.12 Sleeping Barber

Introduction: The sleeping barber problem simulates a finite queue of processes
waiting to access a single shared resource. The barber shop has one barber, a
barber chair, and an n-chair waiting room. When not busy, the barber sleeps in
his chair. An arriving customer finding the barber asleep, wakes him up, sets in
the barber’s chair, and gets a haircut. An arriving customer finding the barber
busy takes a seat in the waiting room — if there are no chairs available, then the
customer leaves the shop. After finishing a hair cut, the barber serves the next
waiting customer — if the waiting room is empty, then the barber goes back to
sleep.

System characteristics:

Domain: Computer /Mutex Protocols
Communication: Shared variable

Degree of coupling: Loose

Scalability: Yes, in the number of chairs
Size/Growth: N/A

Reported verified properties: Safety
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Selected experiments:

Reference| Technique Tool Source code
7 BDD-based SMV N/A

7 Constraint-based| OMC N/A

[6] BDD-based | SMV, ALV] [6]

Reported Results:

— In [7], the main objective is the comparison between constraint-based model
checking (which uses arithmetic constraints as a symbolic representations)
and traditional BDD-based model checking. The sleeping barber problem,
among other examples, is modelled and verified for safety-properties using
the Omega library model checker (OMC) [32,41] and the SMV tool. OMC
uses Presburger arithmetic (integer arithmetic without multiplication) [8,9]
constraints as its underlying state representation and transition relations,
whereas SMV uses BDD for binary encoding of state representation and
transition relations. To compare OMC and SMV, 16 different instances of the
sleeping barber problem were generated, by restricting the ranges of variables
to different values. Then, the performance of the two tools was measured in
terms of the execution time and memory usage required to verify the safety
properties considered. Initial results showed that the execution time and the
memory usage of SMV increased exponentially as the model is scaled up. In
this case, the execution time of OMC was better than SMV when the number
of chairs is more than 6. The experiments were repeated again but with more
appropriate encoding of variable ordering in SMV. As a result, the execution
time and the memory usage of SMV were reduced to a linear increase. In
this case the execution time of OMC was better than SMV when the number
of chairs is more than 2. In all experiments, however, the memory usage
of OMC was always better than SMV.

— In [6], the main objective is the efficient construction of BDD representa-
tions for integer arithmetic constraints. An algorithm for generating BDDs
for linear arithmetic constraints is proposed and shown to produce BDDs
with sizes that are linear in the number of variables involved and the num-
ber of bits used to encode each variable. However, that result was only valid
when all the variables had the same bounds, or different bounds but with all
are powers of two. When the variables have different bounds, which are not
necessarily power of two, the size of the generated BDDs grows exponentially
as the number of variables is increased. Consequently, as noted in [6], this
suggests that if the choice of bounds does not compromise the specification
then it may be a good idea to choose these bounds as powers of two.

The proposed algorithm is incorporated into the Action Language Verifier
(ALV) tool [10]. Then, using the sleeping barber and other examples as a
testbed, the performance of ALV is compared to three different implementa-
tions of SMV (CMU SMYV version 2.5.4.3, Cadence SMV version 08-20-01p2,
and NuSMV version 2). The experiments verified both safety and liveness
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properties and were conducted on SUN ULTRA 10 workstation with 678 MB
of memory, running SunOs 5.7. The results have shown that, the recorded
execution times for the three implementations of SMV grow exponentially in
terms of the size the involved variables. ALV, on the other hand, has shown
linear growth in execution time. Nevertheless, other experiments in [6] have
shown that the size of BDDs generated by ALV grows exponentially if the
involved variables have different bounds and these bounds are not all power
of two.

A.13 Cash Machine

Introduction: Illustrated in Figure 7, the cash machine system involves a cen-
tral database connected to N number of tills, which each can service requests
from M number of users. While a till can only service one customer at a time
(by taking in a bank card), the cash machine system should provide concurrent
access to the central database from two or more tills — the database may not be
available all the time. Also, the system should ensure that an initiated transac-
tion eventually runs to a completion, preferably within realistic time constraint.
The service from a cash point is provided only when a card is identified as legal
through the use of a PIN number; illegal cards should be kept by the till. Two
customers with a shared account should be able to concurrently access that ac-
count from two different tills. Finally, the system should be secure and reliable.
Thus, it is important to minimize the possibility of the use of stolen cards, and
to be robust against hazards such as poor transmission between a till and the
central database.
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System characteristics:

Domain: Controllers

Communication: Shared variable and buffered communication
Degree of coupling: Medium

Scalability: Yes, in the number of tills and user cards
Size/Growth: N/A

Reported verified properties: Safety and liveness

Selected experiments:

Reference| Technique Tool | Source code
[43] Explicit, partial-order reduction| SPIN| N/A

Reported Results:

— In [43], the proposed solution for the problem takes a distributed approach,
where the system consists of multiple controllers, one for till. The cash ma-
chine system is specified in Promela and verified for LTL-specified liveness
and safety properties using SPIN. The verification process is limited to a cash
machine system that has only two users and two tills. Also, the withdraw
transaction is restricted to a fixed amount. The tool has successfully verified
the safety and liveness properties. The table below gives the maximum value
recorded over all experiments for the execution time, memory usage, number
of transactions, the search depth, and the number of generated states.

Time (min)| Memory (mb)| #Transitions| Search Depth| #States
29.03 491.074 5.79 x 10°7 1974536 3.31 x 10°7

It was not possible, however, to verify time related properties such as “all
initiated transactions should be completed within a given time”. This is
mainly due to the limitation of LTL, which does not provide a mechanism
for defining time spans.

A.14 CDMA Library

Introduction: Typically, a wireless communication network comprises three
components: the mobile devices (e.g. mobile phones), base stations (which con-
tain the control hardware and software for managing communications), and
switching centres (which handle specific features such as location management).
The CDMA (code-division multiple access) library is that part of the software
at the base stations which sets up and manages calls to and from the mobile
devices. The CDMA software must also support continuity of connection as a
mobile device changes its location. The CDMA system is important from an
industrial point of view as it is widely deployed in wireless networks across the
globe. Also, from a verification point of view, the system is challenging due to
its large size (typically hundreds of KLOC) and complexity of architecture; the
CDMA is embedded in a highly networked environment and can be invoked
through multiple interfaces.
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System characteristics:

Domain: Controllers

Communication: Shared variable and handshake communication
Degree of coupling: Strong

Scalability: Yes, in the number of mobiles

Size/Growth: N/A

Reported verified properties: Safety, liveness, and deadlock-freedom

Selected experiments:

Reference| Technique| Tool Source code
[12] Explicit | VeriSoft| N/A

Reported Results:

— In [12], the emphasis is on model checking the source code of concurrent
software systems, rather than abstract models specified in some finite-state
modeling language. The idea is to perform automatic and systematic testing
that derives a program through all possible (concurrent) executions. As an
illustration of that approach, testing on Lucent Technologies” CDMA call-
processing library was performed using the VeriSoft [24] tool. First, several
nondeterministic programs were created to simulate the system’s environ-
ment; that is, mobile phones and their activities. Then, VeriSoft was used
to systematically drive the execution of these programs through all possible
behaviour. Consequently, the tool was able to analyse the behaviour of the
CDMA library with respect to millions of scenarios. The result was the ex-
position of several implementation errors that were previously unknown. In
general, the VeriSoft tool is capable of deadlocks, livelocks, divergences and
assertion violations. However, like all other model checkers, the tool suffers
from the state explosion problem. This drawback can be rectified in VeriSoft
by limiting the amount of nondeterminism visible to tool. Unfortunately,
this comes with a price as hiding nondeterminism can result in errors being
missed.

A.15 Cyclic Scheduler

Introduction: The system describe a scheduler for N concurrent processes. The
processes are scheduled in a cyclic fashion so that the first process is reactivated
after the Nth process has been activated. Also, each process must signal termi-
nation before it can be reactivated. The scheduler consists of N cyclers. Each
cycler, say C;, maintains communication with one process, say P;. When C;
starts, it activates P;. Then, C; waits for P; to terminate. When P; terminates,
C; activates the next cycler and waits to be activated again.
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System characteristics:

Handshake communication

Yes, in the number of cyclers

Domain: Controllers
Communication:

Degree of coupling: Loose
Scalability:

Size/Growth: Exponential

Reported verified properties: Deadlock-freedom

Selected experiments:

Reference| Technique Tool | Source code
16 Explicit, partial-order reduction| SPIN | N/A
16 BDD-based SMV | N/A
16 Inequality Necessary Conditions| INCA|N/A

Reported Results:

— In [16], the problem is modelled in Ada [5] and then automatically translated
into the appropriate input language for the three tools SMV [36], SPIN [27]
and INCA [3,17]. The tools are used for detecting deadlock in the model,
and are compared according to the growth of resources consumed as the ex-
ample is scaled up. The following table shows the time and memory growth

rate for each of the tools as the number of cyclers is increased.

SPIN |SPIN+PO| SMV INCA
Mem|Time|Mem|Time|Mem|Time|Mem|Time
12.8 {15.7|1.1 |1.6 |0.3 (1.5 (1.0 |2.4

As indicated by the numbers, SMV showed the slowest growth rate for mem-
ory usage, followed by INCA, SPIN+PO, and then SPIN. The story is almost
the same for growth rate of execution time, except that SPIN+PO came be-

fore INCA

this time.

A.16 Gas Station

Introduction: Illustrated in Figure 8 the system simulates a self-service gas
station with an operator and a number of pumps and customers. A customer
first prepays the operator to get a gas from a specific pump. Once prepaid, the
operator activates the pump; this service is done in a FIFO order by passing
the customer id to a queue associated with the pump. In turn, a customer can
start filling gas from a pump, provided successful verification of id. When the
customer is finished, the pump passes the charge back to the operator, who then

charges the customer and returns the change, if any.
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System characteristics:

Domain: Controllers

Communication: Handshake communication

Degree of coupling: Strong

Scalability: Yes, in the number of customers/pumps
Size/Growth: Exponential

Reported verified properties: Safety

Selected experiments:

Reference| Technique Tool | Source code
38 Explicit, partial-order reduction| SPIN| N/A
38 BDD-based SMV|N/A

Reported Results:

— In [38], the emphasis is on model checking the source code of concurrent
software systems, rather than abstract models specified in some finite-state
modeling language. The idea is to statically analyse the code, abstract away
details, and then automatically generate a model in the input language of
a model checker'. The generated model can then be checked for temporal
properties. The work reported in [38] focused on unit testing Ada programs
for safety properties. A unit, e.g. a procedure or a package, is annotated with
assume-guarantee assertions (in LTL) that define the behaviour of the envi-
ronment. These assertions are then used to synthesis Ada implementations
of testing stubs and drivers, thus resulting in a complete program. Using
abstract interpretation [18] and partial evaluation [29] techniques, the com-
plete program is then abstracted and simplified before it is finally submitted
to the INCA tool to generate corresponding models in the input language
of SMV and SPIN. The tools are then used for verifying safety properties
of the considered Ada unit. This process has been applied to three versions

! This is the alternative approach to the technique used in [12], Section A.14, where
a property is verified by automatic testing that derives the program through all
possible executions
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of the gas station system: with two, three, and four customers but only one
pump. For the case of two customers, SPIN showed better performance in
terms of execution time and memory usage. For the cases with three and four
customers, however, SMV outperformed SPIN in both preceding criteria.?

A.17 Production Cell

Introduction: Depicted in Figure 9, the Production Cell system comprises six
machines, working concurrently: Feed Belt, Elevating Table, Robot, Press, Deposit
Belt, and Crane. The sequence of production starts by the feed belt transporting
a metal plate to the table. The table then elevates and rotates so that the robot
can pick up the plate. The robot picks up the plate with its first arm, then turns
anticlockwise and feeds the metal plate into the press. The press forges the plate
and returns to bottom position in order to unload. The robot picks up the plate
from the press with its second arm, then rotates further to unload the plate on
the deposit belt. The deposit belt transports the plate to the travelling crane.
The crane picks up the metal plate from the deposit belt, moves to the feed belt
and then unloads the metal plate; a new cycle begins. This sequence is further
complicated by the fact that the robot can go back to the table and pick up a
metal plate while the press is forging another one.

2 Another result in [38], which is not relative to the benchmark is that the use of
synthesized environments (as opposed to universal environments which are capable
of invoking any sequence of operations in a unit’s interface) enable faster model-
checking.
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System characteristics:

Domain: Controllers
Communication: Handshake communication
Degree of coupling: Loose

Scalability: -

Size/Growth: 1012

Reported verified properties: Safety and liveness

Selected experiments:

Reference| Technique Tool | Source code
[39] Explicit, partial-order reduction| SPIN| N/A

Reported Results:

— In [39], the Production Cell is specified in Promela and verified using SPIN
version 2.9.5; the partial-ordering reduction algorithm was enabled, but no
memory compression options were used. No timing properties were specified
or verified. The liveness and safety properties were formalised in linear-time
logic (LTL) and verified using full state-space search. The model was de-
signed so that up to 8 blanks can stay in the Production Cell concurrently.
However, due to memory constraints, the liveness and safety properties could
be verified for only up to 3 blanks present in the system; tests were performed
on a Sun Ultra Enterprise 3000, with 4 250MHz, 4MB cache UltraSPARC
CPUs, and 1 GB RAM. Based on the results reported in [39], the following
table lists the verification time (in seconds), memory used (in mega bytes),
and number of computed transitions (in millions) for the liveness properties.
For the safety properties, the table lists the average, the minimum, and the
maximum reported value of the preceding three parameters.

Liveness Safety Properties

Properties|Average|Minimum|{Maximum
Time(s) 56 22.5 13 54
Mem(mb) 80 62.5 54 93
Transition(m)| 1.4 0.515 0.3 1.3

A.18 Spacecraft Controller

Introduction: NASA’s Remote Agent (RA) [40] is an “artificial intelligence”-
based space-craft control system architecture which comprises several software
modules. The RA executive module, illustrated in Figure 10, is the one de-
signed to support safe execution of software controlled tasks on board the space-
craft. Typically, in order to execute correctly, a task would require number of
properties to hold; otherwise, the task execution must be interrupted. For ex-
ample, a task responsible on running and surveying a camera would require
that camera to be turned on throughout the execution. Thus, the RA execu-
tive system maintains a database of all the properties describing the current
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state of the spacecraft; the properties are saved as pairs of variable names and
their corresponding values. To ensure coherence, tasks use locks to prevent other
tasks with incompatible properties from executing concurrently. For example,
the camera-surveying task would lock the property (camera, ON) so that no
other tasks, with camera = OFF request, can execute concurrently. The state
of the database and the lock table is monitored by a maintain properties dae-
mon. Whenever the database of the lock table is changed, say as a result of an
update operation or requiring/releasing a lock, the daemon is signaled so that it
can examine the renewed system state. If there is any inconsistency between the
database and the lock table, the daemon suspends the involved tasks and takes
appropriate actions. The RA executive system is implemented in LISP, hence
communication between processes is via shared variables.

System characteristics:

Domain: Controllers

Communication: Shared variable

Degree of coupling: Medium

Scalability: Yes, in the number of tasks and properties
Size/Growth: N/A

Reported verified properties: Safety

Selected experiments:

Reference| Technique Tool | Source code
[26] Explicit, partial-order reduction| SPIN| N/A
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Reported Results:

— In [26], the RA executive program is translated from Lisp into Promela, and
then verified using SPIN. The Promela model is restricted to three tasks,
including the daemon. Also, the model is restricted to two property names;
hence, the size of the database (and the lock table) is also equal to two. The
Environment process, which runs in parallel with the tasks and the daemon,
is then used to introduce violations into the Promela model. Basically the
environment always assigns the value 0 to one of the two properties. This may
result in an inconsistency between the database and the lock table if a lock
has already been created for that property with a value different from 0. The
model is then verified for two safety properties, specified as assertions and
LTL formulae. Both of the safety properties turned out to be not satisfied
by the model. In total, five errors were discovered. One of these five errors
was just a minor efficiency problem, some code executed twice instead of
once. The remaining four errors, however, were due to processes interleaving
in ways not foreseen by the RA programmer. The RA code, and Promela
model, and verified again; successfully this time. The following table shows
the maximum values reported for the number of states explored, the memory
consumption, and execution time, for both the erroneous and the corrected

model.

#States| Memory (mb)| Time (s)
Erroneous Model| 49038 | 3.708 5.4
Corrected Model | 222840 | 7.088 21.2

A.19 TCASII

Introduction: TCAS is short for Traffic Alert and Collision Avoidance System,
an airborne system required on most commercial aircraft. A TCAS-equipped air-
craft is surrounded by a protected volume of airspace and is capable of identifying
the location and tracking the progress of other aircraft equipped with beacon
transponder. When an aircraft breaks in the protected airspace of another flight,
the TCAS system generates warnings to the pilot, may be even suggest escape
manoeuvres to avoid collision. Currently, there are three versions of the TCAS
system: I, II, and III. The specification of such systems is rather large and com-
plex. For example, the system requirements specification [1] of TCAS II is a 400
page document, written in Requirements State Machine Language (RSML) [33].

System characteristics:

Domain: Controllers
Communication: N/A
Degree of coupling: N/A
Scalability: —
Size/Growth: 10%

Reported verified properties: Safety
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Selected experiments:

Reference| Technique | Tool | Source code
2] BDD-based| SMV|N/A

Reported Results:

— In [2], the emphasis is on evaluating symbolic model checking of state-
machine based specifications. The TCAS II is used as a test bed, and verified
using SMV. As the TCAS II system is quite large, only a portion of the sys-
tem is used. That is the “Own-Aircraft”, which occupies 30% of the overall
specification and is responsible on generating the escape manoeuvres to the
pilot. The RSML specification of Own-Aircraft is (manually) translated into
the input language of SMV, and then verified for a number of safety prop-
erties. The size of the state space reached (approximately) 1.4 x 109, with
at least 9.6 x 10°¢ reachable states. The following table shows the maximum
values reported, over all experiments, for the number of states explored, the
memory consumption, and execution time

# BBD nodes| Memory (mb)| Time (s)
717275 16.4 387

A.20 Cache Coherence for Distributed File System

Introduction: To increases performance and availability in a distributed file
system, clients are allowed to store copies of the server-files locally in their
caches. As these different copies of the files could be updated by the clients,
a problem of inconsistency arises. In that context, a file is called valid if it is the
most recent copy in the system. The goal of a cache coherence protocol, there-
fore, is to ensure that a client performs work only on valid files. Typically, there
are two techniques to achieve this, validation-based and invalidation-based. In
validation-based protocols, the clients ask the server whether their local copies
are valid. In invalidation-based protocols, it is the responsibility of the server to
tell the clients once their local copies are no longer valid. In all cases, a cache
coherence protocol must ensure that the invariance “If a client believes that a
cached file is valid then the authorized server believes that the client’s copy is
valid.” hold. For a simple distributed file system consisting of one server and sev-
eral clients, Figure 11 illustrates the typical communicated messages in a cache
coherence protocol.

System characteristics:

Domain: Distributed Algorithms

Communication: Handshake and buffered communication
Degree of coupling: Medium

Scalability: Yes, in the number of servers, clients, and files
Size/Growth: Exponential

Reported verified properties: Safety
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Server

File is valid File is invalid

Fetch file Validate file

Client 1 Client2 | —— - Client N

Fig. 11. Overview of communications in cache coherence protocol of a distributed file
system

Selected experiments:

Reference| Technique | Tool | Source code
[44] BDD-based| SMV/| [44]

Reported Results:

— In [44], the emphasis is on model checking finite state machine abstractions of
software systems. Three cache coherence protocols for distributed file systems
are considered and verified using SMV. First, the C code of the protocols
is (manually) translated into abstract models in the language of SMV; the
abstract models are restricted to two clients, one server, and one file. The
protocols are then verified for a CTL-specified correctness property. The
maximum reported execution time in all experiments is lees than a second.
Also, the maximum reported number of reachable states is 43684.

A.21 Leader Election Protocol

Introduction: Depicted in Figure 12, the leader election protocol allows a ring
of N processes to elect a leader through sending messages around the ring. Each
process randomly chooses a number id, from a restricted set of values and sends
it around the ring. If there is a unique id, then the process with the maximum
unique id is elected as the leader. Otherwise, the election step is repeated.

System characteristics:

Domain: Distributed Algorithms
Communication: Handshake and buffered communication
Degree of coupling: Loose

Scalability: Yes, in the number of processes
Size/Growth: Polynomial

Reported verified properties: Liveness
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Fig. 12. A top view of the leader election protocol.

Selected experiments:

Reference| Technique Tool Source code
27 Explicit, partial-order reduction| SPIN N/A
34 Directed Model Checking HSF-SPIN|N/A

Reported Results:

— In [27], two versions of protocol are specified in Promela and verified using
SPIN, with 5 as the total number of processes and partial-order reduction en-
abled. The first version of the protocol requires that all processes participate
in the election right from the beginning. In the second version, a process can
decide to participate in the election at a later point of the execution. Two
properties were verified for each version, a safety property and a liveness
property. In all experiments the number of reachable states was around 200.

— In [34], the emphasis is on studying the results of combining directed model
checking with partial-order reduction. The protocol is specified in Promela,
and verified for safety properties using HSF-SPIN. Results show that com-
bining directed—search strategies with partial-order reduction can lead to
significant improvements in terms of state-space size and the run time. How-
ever, for the leader election protocol, the solution quality was also lost and
the tool was not able to verify the required safety property.
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