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Abstract

This report surveys the role of formal verification techniques, especially model check-
ing, in the testing of computer systems. While formal verification and testing have tradi-
tionally been perceived as disparate fields, recent research has brought them considerably
closer together.

1 Introduction

Formal verification offers a rich toolbox of mathematical techniques which can both support
and supplement the testing of computer systems. The toolbox contains varied techniques such
as temporal–logic model checking [11, 41], constraint solving [44] and theorem proving [42],
with modern automated tools for verifying software often combining several of them.

Of most relevance regarding its relation to testing is model checking, for two reasons.
Firstly, it is a fully automated verification technique which is today incorporated in many
commercial systems design tools and has proved useful in a wide range of case studies [13].
Secondly, model checkers [9, 28] provide witnesses and counterexamples for the truth or
violation of desired temporal properties, respectively, which can not only be fed into simulators
for animation but can also be used for generating test cases.

2 Automated Reasoning

Automated reasoning, and in particular model checking, plays an ever increasing role in
testing. Model checking involves the use of decision procedures to determine whether a
model of a discrete state system satisfies temporal properties formalised in a temporal logic.
These decision procedures conduct a systematic generation and exploration of the underlying
system’s state space [12, 34]. If the system model is finite state, this exploration may be
conducted automatically using model checking algorithms [10, 11, 33, 41, 46].

Temporal logics [6, 15, 40, 43] support the formulation of assertions about a system’s be-
haviour as it evolves over time. Typically, assertions include safety properties, defining what
should always be true of a system, and a set of liveness properties, reflecting conditions that
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a system must eventually satisfy. The most widely used temporal logics are LTL [34, 40] and
CTL [11]. LTL is a linear–time temporal logic that interprets formulas over system runs,
which makes it suitable for specifying test sequences. In contrast, CTL is a branching–time
logic that interprets formulas over computation trees, which enables one to reason about struc-
tural properties of the underlying system and to consider various coverage criteria employed
in testing.

Model checkers either work on system models that are provided by the user, or automati-
cally extract system models from software source code. Examples of model checkers following
the former approach include NuSMV [9] whose modelling language targets hardware systems,
and Spin [28] whose modelling language Promela is aimed at modelling distributed algorithms
and communications protocols. Examples of the latter approach include the model checker
Java PathFinder [23] which interfaces with Java, and SLAM [4] and BLAST [25] which
operate on C programs.

The main challenge in model checking arises from the complexity of today’s systems, since
model checking algorithms are linear in the size of the studied system’s state space. Thus,
implementations of model checkers are based on clever data structures and techniques for
storing and manipulating large sets of states. Binary Decision Diagrams (BDDs) [7, 35],
as employed in NuSMV, is a prime example for such a data structure. Advanced model
checking techniques include partial–order reduction [18, 37, 45], such as that implemented
in the Spin model checker, which exploits semantic symmetries in models; and on–the–fly
algorithms [26, 27] which construct only those states of a model that are relevant for checking
the temporal properties of interest.

Since the semantics of software is generally undecidable and since software often gives rise
to models with either infinite or prohibitively large state spaces, the extraction of finite–state
models from software requires abstraction. Software model checkers, e.g., BLAST, borrow
abstraction techniques and algorithms from the static analysis and theorem proving commu-
nities. Such model checkers automatically and consecutively construct models from source
code by discovering and tracking those predicates over program variables that are relevant
to verifying a temporal property at hand. If a path violating the property is discovered, it
needs to be verified whether this path is only an artifact of the model, due to overly ag-
gressive abstraction, or a genuine counterexample. Checking this involves computing weakest
preconditions along the counterexample path, using decision procedures employed in theo-
rem proving. If the counterexample path turns out to be infeasible, sufficient information on
additionally relevant predicates is obtained, which is then used to construct a more precise
model.

3 Formal Verification and Testing

At first sight, formal verification and testing seem to be quite different things. Automated
verification is a static activity that involves analysing system models, with the analysis com-
pletely covering all paths in a model. In contrast, testing is a dynamic activity that studies
the real–world system itself, i.e., its implementation or source code, but covers only certain
‘critical’ system paths.
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Nevertheless, this distinction between model checking and testing increasingly has become
blurred, as more and more model checkers directly work on the source code of software
implementations, rather than on user–provided models. We have already mentioned BLAST
and SLAM which operate on C source code, with SLAM being a specialised tool for verifying
whether device driver implementations obey required API rules. Model checkers for Java code
include Bandera [14], Java PathFinder [23] and SAL [36], which combine model checking
with abstraction and theorem proving techniques, too. Another example for source code
verification is the VeriSoft model checker [19] which systematically searches state spaces of
concurrent programs written in C or C++ by means of a state–less search heuristic that
borrows ideas from partial–order reduction. When executing source code in this manner,
send and receive primitives as well as control structures are extracted and checked on–the–fly.
Facilities for extracting models from source code have recently also been included in Spin [28].
However, the trend of checking temporal properties directly on software implementations is
not an activity restricted to compile–time, but may also be conducted at run–time [3, 24].

The most important role for formal verification in testing is in the automated generation
of test cases. Also in this context, model checking is the formal verification technology of
choice; this is due to the ability of model checkers to produce counterexamples in case a
temporal property does not hold of a system model. The question of interest is how best to
derive input sequences in order to test some implementation against its specification. In the
context of conformance testing [32], for example, one may assume that the specification is
given as a state machine and has already been successfully model–checked against temporal
properties φ. To generate test sequences, one can then simply model–check the specification
again, but this time against the negated properties ¬φ. The model checker will prove ¬φ to
be false and produce counterexamples, in the form of system paths highlighting the reason
for the violation. These counterexamples are essentially the desired test sequences [8].

This basic idea of using temporal formulas as “test purposes” has been adapted to gen-
erating test sequences for many design languages, including Statecharts [30], SCR [1, 17],
SDL [16] and Promela [47]. In these approaches, the temporal properties φ mentioned above
are either derived from user requirements, such as usage scenarios [16], or generated according
to a chosen coverage criterion [30]. Indeed, many coverage criteria based on control–flow or
data–flow properties can be specified as sets of temporal logic formulas [29, 31], including
state and transition coverage as well as criteria based on definition–use pairs. Test generation
on the basis of counterexamples produced by model checkers may also be applied to mutation
analysis [2].

Recently, novel approaches to combining model checking and testing have been proposed,
which involve learning strategies [38]. Black–box checking [39] is intended for acceptance tests
where one neither has access to the the design nor the internal structure of the system–under–
test. This kind of checking iteratively combines Angluin’s algorithm for learning the black–
box system, Vasilevskii–Chou’s algorithm for black–box testing the learned model against
the system, as well as automata–based model checking [46] for verifying various properties
of the learned model. Adaptive model checking [21] may be seen as a variant of black–box
checking where a system model does exist but may not be accurate. In this case, learning
strategies can be guided by the partial information provided by the system model. However,
counterexamples produced via model checking must then be examined for whether they are
genuine or the result of an inaccuracy in the model.
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Another interesting line of research involves the model checking of programs where code
fragments, such as procedures, are missing. In Unit checking [22], the behaviour of the missing
procedure is provided by specifications of drivers and stubs. These specifications employ
logical assertions in order to relate program variables before and after a missing procedure’s
execution. Given a specification of program paths suspected of containing a bug, the program
under investigation is searched for possible executions that satisfy the specification. Theorem–
proving technologies are used to calculate path conditions symbolically, so as to report only
bugs within paths that can indeed be executed during actual program runs.

The model checker BLAST has been extended to automatically generate test vectors for
driving a given program into locations exhibiting a desired predicate [5]. As the underlying
technology relies on symbolic execution for handling arithmetic operators and alias relation-
ships between program variables, paths to such locations are checked for feasibility as in unit
checking. Similar approaches, such as the one reported in [20], employ constraint solving
techniques rather than model checking combined with theorem proving.

4 Summary

Formal verification, and in particular model checking, complements testing in various ways.
Firstly, formal verification may already be carried out on a system model even before a single
line of code has been written. Secondly, while the strength of traditional testing technologies
lies largely in analysing straight–line code, model checking excels when investigating the com-
munication behaviour of concurrent and multi–threaded systems. Thirdly, formal verification
techniques can be employed to generate test suites. When combined with theorem proving
and constraint solving techniques, model checking thus becomes a powerful tool for testing
software.
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