
Enforcing correct programming of libraries:

A case study on hash tables

Néstor Cataño and Gerald Lüttgen

Department of Computer Science, University of York
Heslington, York YO10 5DD, U.K.
{catano, luettgen}@cs.york.ac.uk

Abstract. This paper presents the formalisation and correctness proofs
of large parts of a hash table library used to represent multi-valued de-
cision diagrams (MDDs). This data structure is used, for instance, in
Saturation, a non-trivial algorithm used to store state spaces of asyn-
chronous systems. We have conducted the correctness proofs of the main
functionalities of the hash table in PVS. We outline a proof approach
that can be re-used by practitioners interested in using formal methods
to check their applications. We show how PVS can be used to discover
inconsistencies in the implementation of an application, or to improve it.

1 Introduction

A mathematical proof is the demonstration in logic of a statement, when certain
axioms are assumed. Although rigorous in essence, hand-written mathematical
proofs are not fully exhaustive as it can become impossible for human beings to
keep track of all the details involved in the proof. Mathematical proofs can be
improved with the aid of a theorem prover, which considers all cases and can
find inconsistencies. However, tool-assisted proofs tend to be tedious, e.g., the
tool considers all the obvious details that otherwise could simply be omitted.
Tool-assisted proofs face a trade-off between level of detail and confidence in the
correctness of the results.

In computer science, mathematical proofs can serve to show the correctness of
a program, with respect to a specification, so to increase the confidence that the
program behaves correctly under any circumstances. In particular, the correct-
ness proofs of a library not only increases our confidence about the correctness of
the implementation of the library itself, but about any other library from which
it is imported.

The work presented here is in the context of the formal specification and the
correctness proofs of a library for Multi-valued Decision Diagrams (MDDs) [1–
3], a data-structure used, e.g., in the symbolic state-space generation algorithm
Saturation [5]. The algorithm has been implemented within the Smart tool [4].
Implementation of MDDs heavily makes use of a hash table library. We have
modelled the hash table in the logic of the PVS theorem prover [10], and used
it to prove the correctness of the main functions of the hash table.

The contributions of this paper are three fold. First, we present the formal-
isation and the correctness proofs of large parts of a hash table library used
to represent MDDs (Sections 3 and 4), which are employed in a non-trivial
algorithm used to store state spaces of asynchronous systems [5]. Second, we
sketch a proof approach that can be re-used by practitioners not familiar with
the use of formal verification tools to check their own MDD-based applications
(Section 4). To do so, a set of axioms faithfully describing the implementation
are defined. Based on the documentation of the application, a set of elemen-
tary lemmas expressing properties which are expected to be true are formalised.
The PVS theorem prover is then used to verify the lemmas. One of the bene-
fits of using a type-based tool, such as PVS, to do mathematical proofs is that
even from the type-correctness conditions one is aware of inconsistencies. The
PVS theorem prover counts on several (semi-) decision procedures that can be
used to discharge all the obvious proofs while keeping a high level of detail that
otherwise, e.g., by doing hand-written proofs, is hard to keep. Third, although
Saturation has been defined in terms of MDD operations, its implementation
employs hash tables. Hence, we prove the existence of an isomorphism between
MDDs and hash tables so to be sure that the implementation conforms with the
specification (Section 5). We further show how this apparently simple mathe-
matical proof, when carried out in a theorem prover, can be helpful to outline
well-formed conditions on the hash table so to improve its implementation or
just to adjust it. The work presented here is part of a larger work which attempts
to prove the correctness of Saturation. Having a formal proof of the existence of
such isomorphism ensures that the Saturation correctness proofs are sound with
respect to the data structures employed by the algorithm.

Related work. In [6] Huisman, Jacobs and van den Berg verify a safety prop-
erty of the standard Java’s Vector class, which states that the number of ele-
ments a vector contains is less than or equal to its capacity. The verification is
carried out in the framework of the Loop tool which takes specifications writ-
ten in the Java Modelling Language (JML) [7] and transforms them in proofs
obligations (for invariants, as well as for pre- and post-conditions). Unlike this
work, we deal here with safety properties expressed in PVS directly.

In [13], Verma et al. describe a proof of correctness of Binary Decision Di-
agrams (BDDs) in Coq. Because of the extraction mechanism underlying Coq,
BDDs certified algorithms are generated in Caml. In [11], R. Sumners conducts a
modular proof of a BDD manager in ACL2. In [8], Krstic and Matthews describe
the use of monadic interpreters to verify BDD algorithms. Because of efficiency
reasons, algorithms in Saturation are directly implemented using MDDs, never-
theless their work still serves as a reference for comparison.

2 Preliminaries

Binary Decision Diagrams (BDDs) were initially introduced by Akers in [1] and
popularised by Bryant in [2, 3]. In [2] Bryant shows that a canonical representa-
tion for binary decision diagrams can be obtained from a Binary Decision Tree

(BDT) by defining a total order between the variables involved, and removing
duplicate and redundant nodes. The BDD obtained in this manner is referred
to as an Ordered Binary Decision Diagram (OBDD). If used in canonical form,
checking equivalence of BDDs is reduced to checking identity. Multi-valued De-
cision Diagrams [12] (MDDs) extend BDDs by considering functions to have
finite integer domains instead of boolean ones. When used in canonical form,
MDDs are isomorphic to multi-valued functions. A multi-valued function F on
K variables is defined as follows :

F : SK × · · · × S1 → boolean

where, without loss of generality, each Sk, K ≥ k ≥ 1, is considered to be the
set of positive natural numbers {1, · · · , |Sk|}. Note that the definition of multi-
valued functions presented here is a curried version of an equivalent one that
considers multi-valued functions to have K − 1 (sub-) domains and a range.
The definition of multi-valued functions does not allow domains to be empty.
Quasi-ordered MDDs, the particular variant of MDDs used in Saturation, admits
duplicate nodes.

Definition 1 (Multi-valued Decision Diagrams) Multi-valued decision di-
agrams are directed acyclic edge-labelled multi-graphs with the following prop-
erties :

1. Nodes are organised into K+1 levels from 0 to K. We write
〈

k|p
〉

to denote
a generic node, where k is the node’s level and p is a unique index for a node
at that level.

2. Level 0 consists of two terminal nodes
〈

0|0
〉

and
〈

0|1
〉

.

3. Level K contains only a single non-terminal node
〈

K, r
〉

, the root, whereas
levels K − 1 through 1 contain one or more non-terminal nodes.

4. A non-terminal node
〈

k|p
〉

has |Sk| arcs pointing to nodes at level k− 1. An

arc from the position ik ∈ Sk to the node
〈

k−1|q
〉

is denoted by
〈

k|p
〉

[ik] = q.
Arcs describe local states.

5. No two nodes are duplicate, i.e., there are no nodes
〈

k|p
〉

and
〈

k|q
〉

such

that p6=q and for all 1 ≤ ik ≤ Sk

〈

k|p
〉

[ik] =
〈

k|q
〉

[ik].

In contrast to [12], not fully- but quasi-reduced ordered MDDs are considered,
hence redundant nodes, i.e., nodes

〈

k|p
〉

such that
〈

k|p
〉

[i] =
〈

k|p
〉

[j] for all i6=j,
are valid according to our definitions. A sequence σ of local states (ik, . . . , i1)
is referred to as a global state. Given a node 〈k|p〉, the node reached from it
through a sequence σ of local states (ik, . . . , i1) is defined as follows :

〈k|p〉[σ] =

{

〈k|p〉 if σ = (), the empty sequence

〈(k−1)|〈k|p〉[ik]〉[σ
′] if σ = (ik, σ

′), with ik ∈ Sk .

A global state σ constitutes a path starting at node 〈k|p〉, if 〈k|p〉[σ] = 〈0|1〉
or 〈k|p〉[σ] = 〈0|0〉.

MDDs to store state spaces. While the multi-valued decision diagrams pro-
posed by Kam et. al in [12] are implemented through BDDs, implementing MDDs
directly may result in a greater efficiency during state-space generation as in the
case of Saturation [9]. This is because accessing and manipulating a local state
requires to work on a single MDD node only, rather than on multiple BDD nodes
that need to be traversed recursively. The MDD implementation in Saturation

manages K separate pools of nodes, one per level. To avoid duplicate nodes, each
pool is managed by a separate unique table stored using extensible arrays, whose
sizes can be increased or reduced during execution. Nodes at a given level k are
stored using a node array and an arc array. The array is organised according to
the MDD node indexes, i.e., the constant portion of the data for node 〈k|p〉 is
stored in node[k][p]. The latter is indexed by the start and size field of the node
array, i.e., if node[k][p].start = a and node[k][p].size = b, then 〈k|p〉[i] is stored
in arcs[k][a+ i], for 0 ≤ i < b. The arcs are stored in truncated full format, i.e.,
b < nk means that 〈k|p〉[b] = · · · = 〈k|p〉[nk−1] = 0, where nk is the node size
at level k.

We use PVS to formalise and carry out the correctness proofs of the hash
table. The following section briefly describes the PVS system.

2.1 The PVS system

The PVS prover system [10] is based on Higher Order Logic, i.e., in PVS func-
tions can be used as parameters, be returned as values, or be quantified. In
PVS, specifications are organised in theorys and datatypes. Specifications can
be elaborated with the help of definitions and axioms. Further, specifications for
several fundamental theories such as integers, functions and sets are available
already in the system, so users do not need to (re-) define fundamental theories.

The PVS type checker analyses user-defined theories to establish their consis-
tency. The PVS system is not decidable, so users must provide type consistency
for their specifications. The type checker may generate proof obligations, which
must be discharged before the theory is considered to be type correct. These
proof obligations are referred to as type-correctness conditions (TCCs).

3 Multi-valued functions and MDDs in PVS

The formalisation of MDDs (multi-valued functions) is parametrised by the max-
imum number of levels (number of domains) K. Further, a function Sk returns
the size of a MDD node at a particular level k (the size of the kth domain Sk

of a multi-valued function). In PVS, the notation [P -> Q] describes a func-
tion type from P to Q; further posnat is the set of positive natural numbers.
Definition of multi-valued functions requires domains to be not empty. This
is achieved in PVS from the standard definition for positive natural numbers,
posnat: nonempty type = {i: nat | i>0} containing 1, which declares that
posnat is a nonempty type which contains at least element 1. Since Sk is defined
for positive values only, the size of any node at level 0 is undefined. Nodes at
level 0 are

〈

0|0
〉

and
〈

0|1
〉

.

K: nat

Sk: [{k:posnat|k<=K} -> posnat]

Sequences. In a multi-valued decision diagram, sequences appear in two forms,
either vertically describing global states and paths, or horizontally describing
nodes. Type below_rho(k) below symbolises all natural numbers less than or
equal to the natural number k. Because of the containing 0 declaration, we
know that 0 has type below_rho(k) regardless of k. Type below_tau(k) is
similar to below_rho(k), but restricted to positive natural numbers. Should
you think of below_rho as related to a node at any level, and below_tau as
related to a node at any level but 0. The size of any node at level 0 is undefined;
similarly below_tau is undefined for k = 0.

below_rho(k:nat): nonempty_type = { n:nat | n<=k } containing 0

below_tau(k:nat): type = { n:posnat | n<=k }

Type fseq below formalises a finite (possibly empty) sequence of elements
of some type T. In PVS, the notation [# ... #] is used for the type record; ln
and sq are the fields of the record. The size of a sequence of type fseq is ln,
and the elements of the sequence are mapped by below_tau(ln).

fseq: type = [# ln: nat, sq: [below_tau(ln) -> T] #]

Vertical sequences are introduced by the type Seq(k). It defines a sequence
of elements leading from a node at level k to a node at level 0. In PVS, x‘ln
stands for the field ln of record x. Additionally, fseq[T] in the type declaration
for x, i.e., x:fseq[T], refers to the particular type formed from fseq after re-
placing T in the declaration of fseq by T in the declaration of Seq. A sequence
x of type Seq(k) has length k, i.e., x‘ln = k. Since k has type below_rho(K),
vertical sequences of length 0 are well-defined. The size of a horizontal sequence
Seq_Sk(k) is given by Sk(k).

Seq(k:below_rho(K)): type = { x:fseq[T] | x‘ln=k }

Seq_Sk(k:below_tau(K)): type = { x:fseq[T] | x‘ln = Sk(k) }

In order to be consistent, vertical sequences are to be well-defined horizon-
tally, i.e., global state components are to be local states. The type Sequence(k)
models all the vertical sequences x, x:Seq[posnat](k), such that their sizes are
correctly described by Sk, x‘sq(i) <= Sk(i).

Sequence(k:below_rho(K)): type =

{ x:Seq[posnat](k) | ∀(i:below_tau(k)): x‘sq(i) <= Sk(i) }

Definition for sequences introduced here are general in the sense that they
are parametrised by a type T.

Multi-valued Decision Diagrams. MDDs are introduced by the data type

mddstr below, which is parametrised by K and Sk. In PVS, elements of a data
type are formed using type constructors, e.g., zero, one and node. Type con-
structors may have parameters. Type recognisers, e.g., zero? one? node? are

predicates that group elements of a certain sub-type. For instance, one? evalu-
ated in an element m of type mddstr evaluates to true only if m has been formed
using the constructor one. In other words, one? groups all the elements of type
mddstr formed using the type constructor one. Non-trivial MDDs, which are
formed using the type constructor node, are parametrised by their level ln, a
unique identifier index, and a sequence of subnodes of type mddstr and length
ln, subnodes: Seq_Sk[mddstr](ln). Notice that, because of the definition of
below_tau, non-trivial MDDs are defined for positive values of ln only. Defini-
tion of node does not constraint subnodes to refer to ln - 1, contrarily to what
the definition of quasi-ordered MDD imposes. Parameter ln in subnodes only
expresses that the number of subnodes of any non-trivial MDD node is Sk(ln).
Additionally, parameters in PVS are also functions, e.g., ln evaluated in a node
m such that node?(m) returns its level. Node zero(k) represents a null node at
level k.

mddstr[K:nat, Sk:[{n:posnat|n<=K} -> posnat]]: datatype

begin

zero(l0: below_rho(K)): zero?

one (l1: below_rho(K)): one?

node(ln: below_tau(K), index: nat, subnodes: Seq_Sk[mddstr](ln)): node?

end mddstr

Quasi-ordered MDDs. The definition of orderedmdd? below imposes the
condition that MDDs and their sub-nodes occur in consecutive levels. Any MDD
m such that zero?(m) or one?(m) is orderedmdd? regardless of its level. The
expression measure makes reference to the parameter that decreases in the
recursive call to orderedmdd?. This is needed for termination. More concretely,
measure m by << expresses that, if considering the sub-term order relation <<

on mddstr, in any recursive call to orderedmdd?(m: mddstr), m decreases.

orderedmdd?(m: mddstr): recursive bool =

zero?(m) ∨ one?(m) ∨
(node?(m) ∧
∀(i: below_tau(subnodes(m)‘ln)): ln(m)=ln(subnodes(m)‘sq(i))+1 ∧
orderedmdd?(subnodes(m)‘sq(i)))

measure m by <<

Additionally predicate orderedmddk? characterises all the ordered MDDs at
some level k. More concretely, orderedmddk? is formalised as the conjunction of
predicates orderedmdd? and mddk?, defined below.

mddk?(k:below_rho(K))(m:mddstr): bool =

(zero?(m) ∧ l0(m)=k) ∨ (one?(m) ∧ l1(m)=k) ∨ (node?(m) ∧ ln(m)=k)

orderedmddk?(k:below_rho(K))(m:mddstr): bool = mddk?(k)(m) ∧ orderedmdd?(m)

Not fully- but quasi-reduced MDDs are considered in Saturation, i.e., the
property “no two sub-nodes are duplicate” is enforced although redundant nodes
are permitted. An MDD m has no duplicates?, if any pair of subnodes m1 and

m2 of m, subterm(m1,m) and subterm(m2,m), differ in at least one sub-node at
some position i, i.e., subnodes(m1)‘sq(i) /= subnodes(m2)‘sq(i).

has_no_duplicates?(m: mddstr): bool =

∀(m1,m2:mddstr):
subterm(m1,m) ∧ subterm(m2,m) ∧ m1 /= m2 ∧
nontrivialmdd?(m1) ∧ nontrivialmdd?(m2) ∧
subnodes(m1)‘ln=subnodes(m2)‘ln ⇒
∃(i:below_tau(subnodes(m1)‘ln)): subnodes(m1)‘sq(i)/=subnodes(m2)‘sq(i)

Predicate quasiordered? combines the definitions of orderedmdd? and has -

no duplicates?, and mdd expresses quasiordered? as a type: in PVS, given a
predicate P, (P) is the type induced when considering only those elements sat-
isfying the predicate. Notice that quasiordered?(zero(k)) holds for any k.

quasiordered?(m: mddstr): bool = orderedmdd?(m) ∧ has_no_duplicates?(m)

mdd: type = (quasiordered?)

Paths in MDDs. We define paths in MDDs following the definition of path in-
troduced in Section 2. In mddpath1 below, a sequence σ of local states (ik, . . . , i1)
refers to a sequence s of type Seq[nat](k) of local states s‘sq(i). Conditions
k=0 and one?(m) ensure that 〈k|p〉[σ] = 〈0|1〉 when k = 0. For k>0, a recursive
call to mddpath1 is made passing the subsequence subSeq[nat](k,k-1)(s) of
length k-1 as parameter. Conditions s‘sq(s‘ln)>0 and s‘sq(s‘ln)<=subnodes

(m)‘ln ensure that the kth element of s is correctly described by Sk. MDDs end
in zero(0) as well, consequently, a similar definition for mddpath0 is provided
to reflect this. Paths in MDDs, mddpath, are defined as the logical disjunction
between mddpath1 and mddpath0.

mddpath1(k:below_rho(K))(m:mddstr)(s:Seq[nat](k)): recursive bool =

(k=0 ∧ one?(m) ∧ l1(m)=k) ∨
(k>0 ∧ node?(m) ∧ s‘sq(s‘ln)>0 ∧ s‘sq(s‘ln)<=subnodes(m)‘ln ∧
mddpath1(k-1)(subnodes(m)‘sq(s‘sq(s‘ln)))(subSeq[nat](k,k-1)(s))

)

measure k

mddpath(k:below_rho(K))(m:mddstr)(s:Seq[nat](k)): bool =

mddpath1(k)(m)(s) ∨ mddpath0(k)(m)(s)

Multi-valued functions. A multi-valued function F on k variables is a function
from a domain D, a Sequence(k), to boolean numbers. Notice that this is a
curried version of the equivalent definition of multi-valued functions having a
domain formed of k - 1 variables (k > 1) and a range.

D(k:below_rho(K)): type = Sequence(k)

F(k:below_rho(K)): type = [D(k) -> bool]

4 Formalising hash tables

Hash tables use hash functions to associate keys to array indexes. Ideal hash
functions are collision-free. Two different keys collide if their indexes are the
same. It is always possible to define a collision-free hash function when the
number of possible keys is finite. We assume here the existence of a collision-free
hash function. This assumption does not introduce any contradiction since the
number of possible keys we can define for our hash tables is finite. The hash
table formalisation presented here is oriented by the hash table implementation
introduced in Section 2, and is close to the formalisation of MDDs. For instance,
hash tables are also organised per levels. In a hash table, sub-entries indexes
(sub-nodes indexes) are unique per level. Therefore, sub-entries are used as hash
table keys and their uniqueness is axiomatised.

The correctness proof approach described here can be followed by practi-
tioners interested in the use of formal verification tools to check (part of) their
developments. In a first stage, a set of axioms faithfully describing the implemen-
tation are defined. These axioms are to be simple and of course not contradictory.
The axioms as well as the whole formalisation are based on the documentation of
the application. As for programs in any programming language, axioms should
pass through an iterative refinement process. A natural way to check axioms is
to define a set of elementary lemmas, based on the documentation of the ap-
plication, expressing properties that are expected to be true, and then using a
formal methods tool, e.g., The PVS prover, to verify the lemmas. In our case, the
axiomatisation should provide a formal basis to hash table indexes and to how
particular indexes relate to particular keys at particular levels. When lemmas
cannot be proved correct, two possible actions are to be undertaken. Either the
axiomatisation is wrong, e.g., it is contradictory, so a new one must be provided,
or our understanding of what the implementation should be is incorrect and so
the implementation must be improved or just changed.

In a second stage, library functions are formalised. In the following we de-
fine hash tables structures, then we axiomatise hash tables. We finally formalise
typical hash table functions. We describe how the process of formal modelling
and verification using the PVS theorem prover give us insight on what the im-
plementation of the hash table must be.

Hash table structure. Indexes idx are formalised as natural numbers.

idx: type = nat

A hash table is a function from indexes idx to table structures tablestr

(defined below). This definition of hash table is more general than the imple-
mentation presented in Section 2, e.g., this definition is not bounded to extensible
arrays.

hash_table: type = [idx -> tablestr]

In tablestr, an element zeroentry(v0) represents the entry for the MDD
zero(v0), similarly onentry(v1) represents the entry for one(v1). A non-trivial

entry nontrvlentry represents a non-trivial node in memory. Furthermore,
nonentry is the default value for indexes not bounded to any particular entry
in the hash table.

tablestr[K: nat, Sk: [{n:posnat|n<=K} -> posnat]]: datatype

begin

zeroentry(v0: below_rho(K)): zeroentry?

onentry(v1: below_rho(K)): onentry?

nontrvlentry(vn: below_tau(K), entries: Seq_Sk[nat](vn)): nontrvlentry?

nonentry: nonentry?

end tablestr

Hash table axiomatisation. We first axiomatise hash tables and then define
a set of lemmas to check whether the axiomatisation precisely describes our
understanding of the implementation. We define three special indexes idx_0,
idx_1 and root.

idx_0, idx_1, root: idx

Furthermore, indexes idx_0 and idx_1 should be distinct.

idx_0_1_are_distinct: axiom idx_0 /= idx_1

and they should be the only indexes associated to zeroentry(0) (Axiom hash -

table ax0) and onentry(0) (Axiom hash_table_ax1) respectively.

hash_table_ax0: axiom ∀(t:hash_table,p:idx): t(p)=zeroentry(0) ⇔ p=idx_0

hash_table_ax1: axiom ∀(t:hash_table,p:idx): t(p)=onentry(0) ⇔ p=idx_1

We still need to formalise root, in particular we should formalise how it
relates to idx_0 and idx_1. In the simplest case, when K=0, root should be
exactly one of idx_0 or idx_1 (Axiom root_ax1). Otherwise, K>0 and root is
neither idx_0 nor idx_1 (Axiom root_ax2).

root_ax1: axiom K=0 ⇒ root = idx_0 ∨ root = idx_1

root_ax2: axiom K>0 ⇒ root /= idx_0 ∧ root /= idx_1

The sub-entries of a hash table entry t(p) are given by entries(t(p)).
The uniqueness of hash tables sub-entries is axiomatised by hash table is -

collision free below. This axiom states that for any hash table t and any
entry indexes p1 and p2, if the sub-entries indexes for p1 and p2 are the same,
entries(t(p1)) = entries(t(p2)), then the entry indexes p1 and p2 coincide,
p1=p2.

hash_table_is_collision_free: axiom

∀(t:hash_table, p1,p2:idx):

nontrvlentry?(t(p1)) ∧ nontrvlentry?(t(p2)) ⇒
entries(t(p1)) = entries(t(p2)) ⇒ p1=p2

Now, let us check whether our formalisation faithfully describes our under-
standing of the implementation. Let us prove whether non-trivial entries are only
associated with indexes other than idx_0 and idx_1, and vice-versa. We prove

the two cases of the logical equivalence separately. First, lemma nontrvlentry -

assoc with nontrvlidx states that, for any hash table t and any index p, if
t(p) is non-trivial, nontrvlentry?(t(p)), then p is none of idx_0 or idx_1.

nontrvlentry_assoc_with_nontrvlidx: lemma

∀(t:hash_table,p:idx): nontrvlentry?(t(p)) ⇒ p/=idx_0 ∧ p/=idx_1

From axiom hash_table_ax0 (hash_table_ax1) we know that for any hash
table t and any index p, if t(p) is different to zeroentry(0) (onentry(0)),
e.g., nontrvlentry?(t(p)), then p/=idx_0 (p/=idx_1). Therefore, the lemma is
proved. The actual PVS proof script follows the proof described here.

nontrvlidx_assoc_with_nontrvlentry: lemma

∀(t:hash_table,p:idx): p/=idx_0 ∧ p/=idx_1 ⇒ nontrvlentry?(t(p))

Now, let us prove the other direction of the implication. When trying the
same proof script as before in PVS, the proof is not finished. Some possible
reasons for this is that the axiomatisation provided to idx_0 and idx_1 are
incorrect, e.g. the axiomatisation is contradictory, or a different proof script
should be tried instead, or our intuition about the hash table implementation is
incorrect. If axioms hash table ax0 and hash table ax1 are checked carefully
one realises that p/=idx_0 (p/=idx_1) entails only that t(p)/=zeroentry(0)
(t(p)/=onentry(0)), but never that nontrvlentry?(t(p)). Further, from our
formalisation we know already that zeroentry(k) and onentry(k) can exist
at any level k (even at some positive level). We are now aware of that this fact
has a consequence that nontrvlentry? and non-trivial entries (zeroentry(k)
for k>0 for instance) are far to be the same. The problem we have found here
probably also would have been found doing our proofs by hand instead of using
PVS, but by using a tool one is sure not to forget some cases. Further, writing
the formal specifications forces one to think very precisely about the intended
behaviour of programs, which helps in finding inconsistencies.

Hash table functions. Function memberTbl? below checks for the existence of
an associated key s. More concretely, given a hash table t, a key s has previously
been associated in t, if an index p such that t(p) = nontrvlentry(k,s) exists.
Notice that the type definition for index p in the existential quantifier, ensures
that p is different to idx_0 and idx_1. This is in accordance with the fact that
a node (entry) at level 0 has no sub-nodes (sub-entries). Additionally, the type
definition for p suggests that indexes other than idx_0 and idx_1 can only be as-
sociated to nontrvlentry. This is stated by the lemma nontrvlentry assoc -

with nontrvlkey below. The lemma is proved in PVS using axioms hash -

table ax1 and hash table ax0. We can thus be sure that memberTbl? behaves
as expected.

memberTbl?(k:below_tau(K), t:hash_table, s:Seq_Sk[idx](k)): bool =

∃(p:{x:idx | x/=idx_0 ∧ x/=idx_1}): t(p)=nontrvlentry(k,s)

nontrvlentry_assoc_with_nontrvlkey: lemma

∀(t:hash_table,p:key): nontrvlentry?(t(p)) ⇒ p/=key_0 ∧ p/=key_1

Further, an empty hash table can naively be defined as having associated
every index p to nonentry, t(p) = nonentry. Let us check whether this con-
tradicts our axiomatisation. From axioms hash table ax0 and hash table ax1,
we further need to accept empty hash tables to have indexes key_0 and key_1

associated to correct values. Think of this as being the base case in the defini-
tion of an induction scheme on hash tables. An empty hash table is introduced
by the predicate empty hash table? below. The variable empty hash table is
declared to have type (empty hash table?).

empty_hash_table?(t:hash_table): bool =

t(key_0)=zeroentry(0) ∧ t(key_1)=onentry(0) ∧
(∀(p:key): p/=key_0 ∧ p/=key_1 ⇒ t(p)=nonentry)

empty_hash_table: (empty_hash_table?)

To check whether our definition of empty hash table? correctly describes
empty hash tables, we prove whether an empty hash table has members (See
Lemma empty hash table has no members). This lemma is proved in PVS after
expanding the definitions for memberTbl? and empty hash table?.

empty_hash_table_has_no_members: lemma

not ∃(k:below_tau(K), s:Seq_Sk[key](k)): memberTbl?(k,empty_hash_table,s)

Further, function lookup is defined resembling memberTbl?. The only differ-
ence is that lookup additionally returns the index that has already been associ-
ated to key s. Function the is a standard PVS function which takes a singleton
set and returns “the” element in the set.

lookup(k:below_tau(K), t:hash_table,

s:{sl:Seq_Sk[idx](k) | memberTbl?(k,t,sl)}): idx =

the({p:{x:idx|x/=idx_0 ∧ x/=idx_1} | t(p)=nontrvlentry(k,s)})

Condition memberTbl?(k,t,sl) in the type definition for s ensures that an
index p in the(...) exists. Additionally, theorem provers take care of subtle de-
tails that can easily be overlooked when doing mathematical proofs by hand, e.g.,
the PVS theorem prover generates automatically a type correctness condition
for the type of the set in the(...), which must be singleton. The following type
correctness condition, automatically generated by PVS, must thus be discharged:

lookup_TCC1: obligation

p/=idx_0 ∧ p/=idx_1 ∧ t(p)=nontrvlentry(k,s) ⇒
∀(y:({p:{x:idx | x/=idx_0 ∧ x/=idx_1} | t(p)=nontrvlentry(k,s)})): p=y

To prove this, suppose that an element y such that y/=idx_0 and y/=idx_1

and t(y)=nontrvlentry(k,s) exists. From hash table is collision free, it
follows immediately that y = p. Therefore, the uniqueness is guaranteed and
we are sure that our formalisation is consistent and that our implementation is
correct. Again, the actual PVS proof script follows the proof described above.
Keeping track of all the subtle conditions involved in a proof, e.g., singletoness
of a set, is less error prone with the aid of a formal verification tool.

Finally, function insert associates a key s with an index p in hash ta-
ble t. This index must be formalised. It should be different to idx_0 and
to idx_1 as they are reserved for entries that have no sub-entries. Function
nextTblIndex(k,t) describes the type of index p in insert. Additionally to
nextTblIndex, axiom nextTblIndex ax1 states that for any level k and for any
hash table t, its next free index slot, p=nextTblIndex(k,t), is not associated in
t, nonentry?(t(p)). nextTblIndex is not constrained to a particular implemen-
tation, but to anyone that respects nextTblIndex ax1 and agrees with the type
of nextTblIndex. This type clearly suggests a post-condition for nextTblIndex
and a pre-condition for insert. These conditions can be used to improve the
implementation, e.g. asserting the post-condition at the end of nextTblIndex

and the pre-condition in any place where insert is called.

insert(k:below_tau(K), t:hash_table, p:idx, s:Seq_Sk[idx](k))

: hash_table = t with[(p):=nontrvlentry(k,s)]

nextTblIndex(k:below_tau(K), t:hash_table): {x:idx | x/=idx_0 ∧ x/=idx_1}

nextTblIndex_ax1: axiom

∀(k:below_tau(K), t:hash_table):

nextTblIndex(k,t)/=idx_0 ∧ nextTblIndex(k,t)/=idx_1 ∧
(∀(p:idx): p=nextTblIndex(k,t) ⇒ nonentry?(t(p)))

In PVS, a type correctness condition, is automatically generated to prove the
existence of the value returned by a function. This is the case for nextTblIndex
above. More specifically, some index x different from idx_0 and idx_1 must exist
for any level k of type below_tau(K). To prove the existence of this element, it
suffices to take x = root and use the axiom root ax2 introduced above. One
lesson that can be learnt from this is the following : the use of a formal tool to
check our specifications ensures that none of the checking is forgotten. Without
the use of a formal tool it would have been very easy to forget to check the
existence of this value.

Paths in hash tables. They are defined similarly to paths in MDDs except for
the additional condition p=idx_1 (p=idx_0) for k=0 and p/=idx 0 ∧ p/=idx 1

for k>0 in the definition of tablepath1 (tablepath0).

Discussion. Following Section 2, each MDD level is managed by a unique table,
stored using extensible arrays, implemented as linked lists. Checking whether a
node 〈k|p〉 has been added to the unique table requires to look at the portion of
code where nodes at level k are kept and sequentially check for index equality
against p. This is largely inefficient if compared with the functional approach
used in the formalisation of memberTbl? where no local search is needed as
the checking is simply represented as t(p)=nontrvlentry(k,s). In Saturation,
referencing a node is a frequently used operation, so this search is a source of
inefficiency. A way to alleviate this would be to introduce an order on the linked
list implementing hash tables and to do ordered search instead.

5 Proving that MDDs and hash tables are isomorphic

This Section proves the existence of an isomorphism between MDDs and hash
tables. Notice that the type hash_table: [idx -> tablestr] becomes finite
when the type idx is restrained by the hash table axiomatisation described
in Section 4. Proving the existence of an isomorphism between two structures
requires us to find a bijective homomorphism between them. In the following,
we show how such an homomorphism from multi-valued functions to hash tables
can be constructed. To find this homomorphism we need to define a function
so that a hash table can be constructed from a multi-valued function. In the
following, we axiomatise this function, which we refer as build.

build(k:below_rho(K), f:F(k)): hash_table

We claim that this function must verify a canonicity property which states
that if a multi-valued function f evaluates to true for the sequence x, then it is a
path ending in onentry(0) in the hash table build(K,f), tablepath1(K, root,
build(K,f))(x), and vice-versa. Something similar happens when f evaluates
to false.

canonicity: lemma

∀(f:F(K), x:D(K)): (not f(x) ⇔ tablepath0(K,root,build(K,f))(x)) ∧
(f(x) ⇔ tablepath1(K,root,build(K,f))(x))

Existence of an injective homomorphism. We claim that the following
homomorphism h between multi-valued functions and hash tables is injective.

h = λ(f:F(K)): build(K,f)

We prove that for all multi-valued functions f1 and f2, if build(K,f1) is
equal to build(K,f2), then f1=f2. To prove this, notice that the following result
holds due to lemma canonicity:

f1(x) ⇔ tablepath1(K,root,build(K,f1))(x)

f2(x) ⇔ tablepath1(K,root,build(K,f2))(x)

Therefore, replacing build(K,f1) by build(K,f2) in the first equivalence,
we obtain f1=f2, as desired.

Existence of a surjective homomorphism. We prove that, for all hash table
t, a multivalued function f of type F(K) exists such that h(f) = t. More specifi-
cally, we need to define an inverse homomorphism h1 of h such that h(h1(t)) =

t. We thus need to define “equality” of hash tables. We propose hash table -

equality as an appropriate definition for hash table equality. This definition
states that two hash tables t1 and t2 are equal if only if any path in one table
is a path in the other table and vice-versa.

hash_table_equality: assumption

∀(t1,t2:hash_table):
t1=t2 ⇔
(∀(s:Seq[idx](K)): tablepath1(K,root,t1)(s) ⇔ tablepath1(K,root,t2)(s) ∧

tablepath0(K,root,t1)(s) ⇔ tablepath0(K,root,t2)(s))

We claim that h1 = λ(t: hash_table): λ(x: D(K)): tablepath(K,root,t)

(x) is an inverse homomorphism of h. The homomorphism h1 takes a hash table
t and returns the function in which the domain is formed of those elements x

that are paths in t starting from the root, tablepath(K,root,t)(x).
After expanding the definition of h1 and h, the proof of h1(h(t)) = t reduces

to build(K,λ(x:D(K)): tablepath(K,root,t)(x))) = t.
We do not prove the last equality. Instead, we state that this equality de-

scribes a property that a correct definition for build must satisfy. Additionally,
from this equality some well-formed conditions on the implementation of the
hash table can be outlined. The notion of tablepath suggests that elements in
the hash table, e.g. node indexes, are to be referenced and reachable from each
other. The use of linked lists, as in the case of the hash table implementation
in Saturation, Section 2, is a valid alternative. The type of x, Sequence of size
K, suggests that the hash table can be seen as composed of K levels. A special
index root refers to level K. The MDD implementation in Saturation manages
K separate pools of nodes, one per level, though other implementations are also
possible. Further, when applying hash table equality to the equality above, it
comes that build, which sees global states as function domains, and tablepath

play complementary roles: paths in the hash table must be unique from top to
bottom starting at index root. These conditions would have been outlined af-
ter a subtle analysis of the hash table requirements in Saturation, but having a
formal methods tool ensures that the analysis is formally correct.

6 Conclusion and future work

The formalisation and proofs presented here are part of a larger work which
involves the formalisation and correctness proof of the algorithm Saturation [5].
The correctness property can be phrased as the characterisation of a fixed-point
of the state-space generated for a MDD node. To do this correctness proof we
have considered necessary to formalise and conduct the correctness proofs of
the infrastructural components used by the algorithm, e.g., MDDs, before. Ad-
ditionally, because the implementation of MDDs heavily makes use of a hash
table library, we have proved the existence of an isomorphism between MDDs
and hash tables. Having a formal proof of the existence of this isomorphism
ensures that the Saturation correctness proofs are sound with respect to the
data structures employed by the algorithm. Our proof approach can be used for
practitioners interested in using formal methods to check their applications. By
doing mathematical proofs in a theorem prover not only ensures that no details
are overlooked but also serves to gain insight in how the implementation really
works. This insight can then be used to improve the implementation.

In PVS, type-correctness conditions (TCCs) enable a separation of concerns,
so that structural proof-constraints do not clutter the actual proof one is reason-
ing about. In our case, MDDs are very structured. If we would have to put every
constraint regarding well-structuredness as part of our lemmas, our formalisation
would look quite ugly. Additionally, PVS’s ability to discharge most TCCs au-

tomatically allows us to conduct the proofs much quicker and thus makes formal
methods more economical.

Acknowledgements. We thank Jim Woodcock, Laurent Théry and Leonardo
Freitas for useful comments on earlier versions of this paper.

References

1. S. B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, C-
27(6), Jun. 1978.

2. Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, Aug. 1986.

3. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

4. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and stochas-
tic modeling with Smart. In Modeling Techniques and Tools for Computer Per-
formance Evaluation, volume 2794 of Lecture Notes in Computer Science, pages
78–97. Springer-Verlag, Sep. 2003.

5. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state-space generation. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 2031 of Lecture Notes in
Computer Science, pages 328–342, Genova, Italy, April 2001. Springer-Verlag.

6. M. Huisman, B. Jacobs, and J. van den Berg. A case study in class library ver-
ification: Java’s Vector class. Software Tools for Technology Transfer (STTT),
3/3:332–352, 2001.

7. The Java Modeling Language. http://www.cs.iastate.edu/∼leavens/JML/.
8. S. Krstic and J. Matthews. Verifying BDD algorithms through monadic inter-

pretation. In Verification, Model Checking and Abstract Interpretation (VMCAI),
volume 2294 of Lecture Notes in Computer Science, pages 182–195. Springer, 2002.

9. A. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In Applications and Theory of Petri Nets, volume 1639 of
Lecture Notes in Computer Science, pages 6–25. Springer-Verlag, Jun. 1999.

10. The PVS Specification and Verification System. http://pvs.csl.sri.com/.
11. R. Sumners. Correctness proof of a BDD manager in the context of satisfiability

checking. ACL2 workshop, 2000.
12. R. K. Brayton Timothy Y.K. Kam, T. Villa and A. L. Sangiovanni-Vincentelli.

Multi-valued decision diagrams: Theory and applications. Multiple-Valued Logic,
4(1–2), 1998.

13. K. N. Verma, J. Goubault-Larrecq, S. Prasad, and S. Arun-Kumar. Reflecting
BDDs in Coq. In Asian Computing Science Conference, volume 1961, pages 162–
181. Springer Verlag, 2000.

