
AN ANTICIPATED FIRING SATURATION ALGORITHM
FOR SHARED-MEMORY ARCHITECTURES

Jonathan Ezekiel∗, Gerald Lüttgen† and Radu I. Siminiceanu ‡

ABSTRACT

Parallelising symbolic state-space generation algorithms, such as Saturation, is known
to be difficult as it often incurs high parallel overheads. To improve efficiency, related
work on a distributed-memory implementation of Saturation proposed using idle pro-
cessors for speculatively firing events and caching the obtained results, in the hope that
these results will be needed lateron.

This paper investigates a variant of this anticipated firing approach for shared-memory
architectures, such as multi-core PCs. Rather than parallelising Saturation, the idea is
to run the sequential Saturation algorithm on one core, while the others are given spec-
ulative work. Since computing the optimal strategy for selecting useful work is likely
to be an NP-complete problem, the paper devises and implements various heuristics.
The obtained experimental results show that moderate speed-ups can be achieved as
a result of using anticipated firing. However, the proposed heuristics require further
work in order to be truly useful in practice.

1 INTRODUCTION

Automated verification, such as temporal-logic model checking [13], relies on efficient algo-
rithms for computing state spaces of complex system models. To avoid the well-known state-
space explosion problem, symbolic algorithms working on decision diagrams, usually BDDs,
have proved successful in practice [12, 23]. Several efforts have been made to implement these
algorithms on parallel computer platforms, most notably on networks of workstations and PC
clusters [18, 19, 20, 24, 28]. The efforts range from simple approaches that essentially imple-
ment BDDs as two-tiered hash tables [24, 28], to sophisticated approaches relying on slicing
BDDs [19], to techniques for workstealing [18]. However, the resulting implementations typ-
ically show limited speed-ups, which is not surprising given that state-space generation is
essentially an irregular task.

Saturation [10], as implemented in the verification tool SMART [7], is a symbolic state-
space generation algorithm with unique features. It is intended for event-based asynchronous
system models that are based on interleaving semantics, and exploits the local effect of firing
events on state vectors by locally manipulating Multi-valued Decision Diagrams (MDDs) [22],
which are a generalised version of BDDs. Saturation has proved orders of magnitude more
time- and memory-efficient than other symbolic algorithms [8], including the one imple-
mented in the popular NuSMV model checker [12]. Recently, the local effect of firing events
has been exploited to parallelise Saturation on shared-memory architectures, in particular
on multi-core PCs [15, 16]. Unfortunately, several overheads are incurred from the paralleli-
sation, such as for scheduling and synchronisation, which can prevent run-time gains.

∗Department pf Computer Science, Imperial College London, U.K.; email: jezekiel@doc.ic.ac.uk.
†Department of Computer Science, University of York, U.K.; email: luettgen@cs.york.ac.uk.
‡National Institute of Aerospace (NIA), Hampton, Virginia, U.S.A.; email: radu@nianet.org.

1

An alternate approach to parallelisation is anticipated firing [4, 5], a method for speeding
up Saturation by utilising idle processor cores on a parallel architecture to perform useful
work during the state-space generation process. Anticipated firing was first introduced and
used for a distributed version of Saturation on a Network of Workstations (NOW) [3]. In
the distributed setting, a workstation may frequently be idle while it waits for another
workstation to complete its work. During this idle time, a workstation can perform predictive
work on the state space that it may need to carry out at some point in the future, and store
the result of such work in caches. From an efficiency perspective, this can only have a
positive impact on the run time of the algorithm, since it does not interfere with the state-
space generation task. Hence, the question arises as to whether anticipated firing can be
used for a shared-memory version of Saturation to perform useful work for speeding up the
sequential state-space generation process without introducing high parallel overheads.

This paper investigates anticipated firing for our Saturation algorithm on shared-memory
architectures. We begin by recalling the Saturation algorithm (cf. Sec. 2), before introducing
the concept of anticipated firing and investigating the potential, i.e., theoretical, savings
when using an optimal strategy for selecting useful work (cf. Sec. 3). We then implement an
anticipated firing Saturation algorithm on a shared-memory architecture, namely a multi-
core PC, and provide experimental results for the algorithm’s performance on a benchmark
of models (cf. Sec. 4). Finally, we draw conclusions from both the results of our optimal
strategy investigation and the algorithm’s actual performance of on a benchmark (cf. Sec. 5).

2 BACKGROUND

A discrete-state model is a triple (Ŝ, s0,N), where Ŝ is the set of potential states of the

model, s0 ∈ Ŝ is the initial state, and N : Ŝ → 2
bS is the next-state function specifying

the states reachable from each state in one step. Assuming that the model contains K
submodels, a (global) state i is a K-tuple (iK ,...,i1), where ik is the local state of submodel k,

for K ≥ k ≥ 1, and Ŝ = SK × · · · × S1 is the cross-product of K local state spaces. This
allows us to use symbolic techniques based on decision diagrams to store sets of states. We
decompose N into a disjunction of next-state functions, so that N (i) =

⋃
e∈E Ne(i), where E

is a finite set of events and Ne is the next-state function for event e. We seek to build the
reachable state space S ⊆ Ŝ, i.e., the smallest set containing s0 and closed with respect to N :
S = {s0} ∪ N (s0) ∪ N (N (s0)) ∪ · · · = N ∗(s0), where “∗” denotes reflexive and transitive
closure and N (X) =

⋃
i∈X N (i).

2.1 Symbolic encodings of S and N

In the sequel we assume that each Sk is finite and known a priori. In practise, the local
state spaces Sk can actually be generated on-the-fly by interleaving symbolic global state-
space generation with explicit local state-space generation [11]. Without loss of generality,
we further assume that Sk = {0, 1, . . . , nk−1}, with nk = |Sk|. We then encode any set

X ⊆ Ŝ in a (quasi-reduced ordered) MDD over Ŝ. Formally, an MDD is a directed acyclic
edge-labelled multi-graph where:

• Each node p belongs to a level k ∈ {K, ..., 1, 0}, denoted p.lvl ;

• There is a single root node r at level K;

2

• Level 0 can only contain the two terminal nodes Zero and One;

• A node p at level k > 0 has nk outgoing edges, labelled from 0 to nk−1; the edge
labelled by ik points to a node q at level k−1; we write p[ik] = q;

• Given nodes p and q at level k, if p[ik] = q[ik] for all ik ∈ Sk, then p = q, i.e., there are
no duplicates.

The set encoded by an MDD node p at level k > 0 is B(p) =
⋃

ik∈Sk
{ik} × B(p[ik]), letting

X × B(0) = ∅ and X × B(1) = X for any set X
For storing N , we adopt a representation inspired by work on Markov chains. This

requires the model to be Kronecker consistent [10], a restriction that can often be automat-
ically satisfied by concurrency models such as Petri nets. Each Ne is conjunctively decom-
posed into K local next-state functions Nk,e, for K ≥ k ≥ 1, satisfying Ne(iK , . . . , i1) =

NK,e(iK) × · · · × N1,e(i1), in any global state (iK , . . . , i1) ∈ Ŝ. Using K · |E| matrices
Nk,e ∈ {0, 1}nk×nk with Nk,e[ik, jk] = 1 ⇔ jk ∈ Nk,e(ik), we encode Ne as a boolean Kro-
necker product: j ∈ Ne(i) ⇔

⊗
K≥k≥1 Nk,e[ik, jk] = 1, where ⊗ indicates the Kronecker

product of matrices. The Nk,e matrices are extremely sparse; when encoding a Petri net, for
example, each row contains at most one nonzero entry.

2.2 Saturation-based iteration strategy.

In addition to efficiently representing N , the Kronecker encoding allows us to recognise event
locality and employ Saturation [10]. We say that event e is independent of level k if Nk,e = I,
the identity matrix. Let Top(e) denote the highest level for which Nk,e 6= I. An MDD node
p at level k is saturated if it is a fixed point with respect to all Ne such that Top(e) ≤ k,
i.e., SK × · · ·×Sk+1 ×B(p) = N≤k(SK × · · ·×Sk+1 ×B(p)), where N≤k =

⋃
e:Top(e)≤k Ne. To

saturate MDD node p once all its descendants are saturated, we update it in place so that
it encodes also any state in Nk,e × · · · × N1,e(B(p)), for all events e such that Top(e) = k.
This can create new MDD nodes at levels below k, which are saturated immediately, prior
to completing the saturation of p. If we start with the MDD encoding the initial state s0

and saturate its nodes bottom up, the root r will encode S = N ∗(s0) at the end [10].
Saturation consists of many lightweight, nested fixed-point iterations and is completely

different from the traditional breadth-first approach that employs a single, heavyweight
global fixed-point iteration. The algorithm contains two main mutually recursive functions:
Saturate and Fire. Function Saturate calls Fire to recursively perform the event firings while
saturating nodes, while Fire calls Saturate to saturate nodes that are created as a result of
event firings. The algorithm also uses supporting functions for creating and deleting nodes,
performing a union on two nodes, storing saturated nodes by checking them into a hash
table, called unique table, and caching results to previous calls of Fire in a firing cache. The
pseudo code for the Saturation algorithm and supporting functions is shown in App. A.

Experimental results reported in [6, 10, 11] consistently show that Saturation outperforms
breadth-first symbolic state-space generation by orders of magnitude in both memory and
time, making it arguably the most efficient state-space generation algorithm for globally-
asynchronous locally-synchronous discrete event systems. However, the optimal and irregular
nature of the algorithm also means that it is difficult to parallelise [15, 14]. Thus, approaches

3

such as anticipated firing which exploit idle cores, while avoiding the parallelisation overheads
associated with irregularity, are desirable for parallelising Saturation.

3 ANTICIPATED FIRING

Anticipated firing is an approach to parallelisation that utilises idle cores to predictively
perform work that will likely be required lateron.

tsat tbf tef T

tsat tbf T−f +h

tsat tsat +f

tbf +h

f

SEQ

main

thr1

Figure 1: An example of anticipated firing.

Fig. 1 illustrates a typical example when anticipation can save execution time for our
Saturation algorithm. The top graph shows the relevant timepoints in a sequential execution.
If a node is saturated at time tsat and later receives a request to fire some event at time tbf , this
firing task can potentially be executed by another thread running in parallel, immediately
after the node has been saturated. The result of the firing is cached; therefore, when the
request for it occurs on the main thread, the firing operation, which takes f time units, is
replaced by a cache lookup, taking h time units. Note that for the result to be ready in time,
the duration of the call f needs to satisfy

tsat + f < tbf .

Under most circumstances, h is negligible, in any case much smaller than f , whence the new
run time of T − f + h shows a potential savings of f − h. Usually, there are numerous fire
calls that can be anticipated during a sequential run, and in an ideal case the savings are
compounded. A well designed heuristic should correctly anticipate a large portion of these
calls, while minimising the inevitable overheads from running multi-threaded applications,
i.e., data racing, spin locks, etc. We next look at the practical upper bounds of applying the
anticipation technique.

3.1 Perfect knowledge assumption

To evaluate the potential for run-time savings of the heuristics in a shared-memory environ-
ment, we look at the hypothetical scenario of a perfect knowledge, i.e., we assume that every
event firing origination timepoint is known a priori. To conduct the analysis, we collect all
the timepoints that are involved in the firings of events in saturated nodes, from a sequential
run of Saturation, and store them in a list of events. A list item includes:

• The node p and event e in the fire request;

4

• The time of p’s saturation, tsat(p);

• The time when the fire procedure starts tbf (p, e);

• The time of completion of the firing tef (p, e)

The duration of each call is then tdur (p, e) = tef (p, e) − tbf (p, e).

tsat1 tbf 1
tef 1

T

T−f1+h

tsat1+f1

f1

tsat2 tbf 2
tef 2

f2

tsat1

tsat1

tbf 1
tbf 2

−f1+h tef 2
−f1+htsat2

tsat2

< f2

tbf 2
−f1+h tef 2

−f1+h

SEQ

main

thr1

thr2

Figure 2: An example of one anticipation call disabling another.

A naive analysis would simply add the lengths of the anticipated calls and report that as
the maximum run-time savings. This type of analysis, however, does not take into account
the snowballing effect of anticipating calls with respect to reducing the window of opportunity
for subsequent anticipated calls. Consider the scenario in Fig. 2, where two calls — call them
F1 and F2, with their corresponding timepoints — are both initially valid for anticipation.
If call F1 is anticipated, the interval [tbf 1

, tef 1
] is collapsed. Then each subsequent timepoint

in the list needs to be updated as follows, to reflect the new scheduled time:

• All timepoints in the interval [tbf 1
, tef 1

] move back by tbf 1
− tsat1 , since their new

scheduled time is on a new thread that starts earlier at tsat1 ;

• Timepoints after tef 1
move back by f1.

A collateral result of this collapse is that a later call, for example call F2, may no longer be
anticipated. This happens in case the interval from tsat2 to the new timepoint for the fire
request, tbf 2

− f1 + h, has become smaller than the necessary f2 units to complete the call
and have the result ready.

A C program (see App. B) computes the new, “realistic” savings due to the collapsing
effect. The strategy adopted in the analysis is to anticipate calls strictly in the order in
which they arrive, i.e., in a first come first served manner, and then rule out the calls that
become disabled. This is an iterative process that updates the list and potentially eliminates
some of the entries. Other strategies can be thought of, such as collapsing the intervals in
a different order, beginning with the longest interval first and updating the list items that
follow.

It is easy to see, however, that either one of these strategies might miss the optimal
savings. A counterexample for the first-call-first strategy is an instance of the scenario in
Fig. 2, where f2 > f1. A counterexample for the best-call-first strategy (not illustrated) is

5

Table 1: Theoretical results for the anticipated firing heuristic

N total naive first
Slotted Ring Network Protocol
40 77.55 57.13 29.10
60 81.61 77.20 35.93
80 83.50 79.44 41.37

100 84.22 81.05 42.79
Round Robin Mutex model
150 72.51 33.89 30.22
200 78.62 33.92 30.93
250 81.85 37.76 35.01
300 85.07 38.77 36.70
Kanban model
25 41.34 15.48 13.85
30 41.74 15.80 14.46
35 41.69 16.34 15.53
40 41.67 16.54 15.98

Queens model
9 71.91 61.25 40.00

10 85.34 73.18 58.88
11 92.36 78.04 65.67
12 96.44 81.23 66.78

Leader Election model
5 79.61 70.15 55.17
6 85.82 83.47 62.37
7 90.67 90.05 66.29
8 94.07 72.06 54.84

FMS model
40 65.67 18.21 12.14
60 75.43 27.18 20.17
80 80.84 33.44 25.91

100 84.47 35.77 26.04

a scenario with four calls of lengths, f1, f2, f3 and f4, with f2 the longest. If F2 disables
both F3 and F4 and if f2 < f3 + f4, this strategy is not optimal. In general, we believe that
computing the optimal strategy of choosing which calls to anticipate, is an NP-complete
problem which is most likely reducible from one of the standard scheduling problems.

3.2 Results

Table 1 shows three values for the computed savings on a series of parameterised models. The
first column lists the model parameter (size), the second is the sum of all fire call times on
saturated nodes, the third eliminates the unfeasible calls due to the condition tsat + f < tbf ,
while the fourth shows the “realistic” savings for the first-call-first strategy.

When considering parallelising Saturation using the anticipated firing approach, the sav-
ings indicate that the approach is potentially worthwhile for implementation on a shared-
memory architecture. However, we must also consider that a practical implementation is
unlikely to improve on the savings indicated in the fourth column.

6

AnticipatedFire(in k:lvl ,p:idx)

Fire events on p, a node at level k from above k, in anticipation of future work.

declare e: event;

1. foreach e ∈ Ek+1 do

2. RecFire(e, k, p, false);

RecFire(in e:event ,l:lvl ,q:idx ,CT :bool):idx

Build an MDD rooted at s, a node at level l, in UT [l], encoding N ∗
≤l(Ne(B(q))).

Return s.
declare L:set of lcl ;

declare f ,u,s,r:idx ;

declare i,j:lcl ;

declare sCng:bool ;

1. if l < Last(e) then return q;

2. if Find(FC[l], {q, e}, s) then return s;

3. s ⇐ NewNode(l);

4. sCng ⇐ false;

5. l ⇐ Locals(e, l, q);

6. while L 6= ∅ do

7. i ⇐ Pick(L);

8. f ⇐ RecFire(e, l−1, q[i], CT);

9. if f 6= 0 then

10. foreach j ∈ N l

e(i) do

11. u ⇐ Union(l−1, f, s[j]);

12. if u 6= s[j] then

13. s[j] ⇐ u; sCng ⇐ true;

14. if sCng then Saturate(l, s);

15. r ⇐ Check(l, s);

16. if CT and r = s then AddTask(l, s);

17. Insert(FC[l], {q, e}, s);

18. return s;

ThreadLoop()

If there are no items in the task queue sleep until woken up. Otherwise remove the
head item (k, p) from the task queue, and call AnticipatedF ire(k, p).

Figure 3: Pseudo-code for the anticipated firing algorithm.

4 SHARED-MEMORY ANTICIPATED FIRING

As demonstrated in the previous section, the anticipated firing approach can be used to
make savings by utilising idle cores to perform useful work. In practice, anticipated firing
can be employed to parallelise Saturation by using idle cores to fire events on newly saturated
nodes. If an event e is fired on a node p and results in a new node q, then q can be checked
into the unique table, and the pair {e, q} can be put into the firing cache, so that q can be
retrieved if e is fired on p again at some point in the future. In the following, we adopt the
anticipated firing idea to parallelise Saturation on a shared-memory architecture. To do so,
we use the thread pool of the Parallel Saturation algorithm in [16] to allow anticipated work
to be created and scheduled as tasks, while a main thread constructs the state space and
creates anticipated firing tasks. Then, all we are required to decide is when tasks should be
created and how they should be dealt with, while leaving the state-space generation task to
perform its work without interruption.

7

We present a naive algorithm for anticipated firing in Fig. 3. The function AnticipatedFire
carries out firings on a given node p at level k for events at level k+1, by calling RecFire. The
creation of anticipated firing tasks is performed by RecFire, which adds a task for anticipated
firing as soon as node s becomes saturated at line 16, by calling AddTask. We do not wish to
initiate anticipated firings on nodes that are created as a result of other anticipated firings
for now, as this may lead to a large amount of unnecessary work. Thus, we include a boolean
flag called create task (CT) which indicates whether RecFire should create an anticipated
firing task after a node has become saturated, and AnticipatedFire calls RecFire with CT
set to false. Although we do not show it in our pseudo-code, any function call to RecFire
from functions being executed by the main thread set CT to true. We also do not wish to
perform anticipated firing on nodes that have previously been checked into the unique table,
as they are more likely to have events fired upon them.

For our thread pool, the ThreadLoop function allows a thread to pick an anticipated
firing task and carry it out by calling AnticipatedFire. We still have a one-to-one thread
to processor allocation [16], but we allocate one thread as the main thread, which does not
synchronise on the task queue and is left uninterrupted to saturate the root node. We do
not show locks in our pseudo-code, but as with our thread pool implementation we lock the
operation caches and the unique table on a per level basis for atomic access. This is the only
part of the anticipated firing that can interfere with the state-space generation task.

4.1 Selecting events

As soon as a node has become saturated, anticipated firings are performed on that node
to carry out work that may be used in the future. Key to the efficiency of the anticipated
firing approach is selecting tasks and events that will carry out useful work. While we
cannot accurately predict whether an event will carry out useful work, there are a number
of heuristics that we can employ in our algorithm which are potentially useful for selecting
appropriate events. These are based on the following observations:

• The number of events we wish to fire on a node is significant. If we fire a large number
of events on a node, we potentially tie up a processor working on that node. It may
be better to fire less events on that node, since the anticipated firing will complete
quickly. This reduces the chance that the main thread will begin firing events on the
node before the anticipated task has completed. Firing less events also frees up a
thread quickly to perform newly created anticipated firing tasks.

• Instead of firing events from one level above the node selected for anticipated firing, we
may wish to fire events from several levels above this node. This is potentially beneficial
since there is less chance that the main thread will start firing the same events on the
node as the anticipated task, before the anticipated firings have completed.

• We may wish to discard anticipated firing tasks for saturated nodes that are at lower
levels of the MDD, since the closer to the level that the main thread is saturating for,
the greater the possibility for new and potentially useful work. For example, by the
time the main thread reaches level fifty of the MDD, nodes below level ten are likely
to have been fired upon several times, creating more cached work, and less new work
than for nodes at higher levels.

8

We can use these heuristics for selecting anticipation tasks and events with our anticipated
firing algorithm in order to try and increase the amount of useful work performed by idle
processors.

4.2 Run-time and memory results

The benchmark we selected for our algorithms contains ten models that have been previously
used to parallelise Saturation [6, 10, 11]. The models are parameterised, i.e., a parameter
can be set for the model, typically N , which alters the size of the state space.

• The classic dining philosophers (Philosophers) [9] protocol is a solution for mutual
exclusion problems. N indicates the number of philosophers, and K = N/2.

• The flexible manufacturing system (FMS) [25] consists of three types of machines that
process three types of parts. The parameter N indicates the initial number of each
type of parts, and K = 19.

• The slotted ring network protocol (Slot) [26] is a well known model of a local area
network. N is the number of processors in the ring, and K=N .

• The Kanban manufacturing system (Kanban) [29] contains sixteen stations that pro-
cess parts. The parameter N sets the initial number of parts within a station. K is
the number of stations.

• The randomised leader election protocol (Leader) [21] solves the problem of designating
a processor as leader within a unidirectional ring. The parameter N of our model
defines the number of processors in the ring, and K = 11N .

• The round robin mutex exclusion protocol (Robin) [17] is used to control access for a
ring of N processors that access a shared resource.

• The classic queens problem (Queens) models a game that finds a way to position N
queens on an N × N chessboard without the queens attacking each other.

• The runway safety monitor (RSM) [27] was developed by NASA and Lockheed Martin,
as a protocol to detect runway safety incidents. The RSM protocol defines targets T on
the ground such as ground vehicles on the runway, which have speeds S, and represents
the takeoff and landing zone for aircraft as a 3D grid X ×Y ×Z, where X is the width
of the runway, Y is its length and Z is its height. For our RSM model we fix T=1 and
S=2. The parameters of the model are X, Y and Z.

• The Aloha network protocol (Aloha) [1] defines a simple mechanism for transmitting
data across a network. The parameter N represents the number of nodes in the net-
work, and K = N+3.

We implemented our anticipated firing algorithm using C and the POSIX Pthreads library [2].
The machine used for our experiments is a dual-processor, dual-core PC with 2GB of memory
and Intel Xeon CPU 3.06GHz processors with 512KB cache sizes, running Redhat Linux AS
4, Redhat kernel 2.6.9-22.ELsmp, with glibc 2.3.4-2.13. We applied the algorithms to our
benchmark shown in Table 2, and included three heuristics for selecting events.

9

Table 2: Parameters and state-space sizes of the benchmark

Parameter (N) State-space size (|S|)
Slotted Ring Network Protocol

150 4.5 × 10158

Round Robin Network Protocol
240 9.5 × 1074

Kanban Manufacturing System
35 2.5 × 1014

Flexible Manufacturing System
14 1.3 × 1010

Queen Problem
13 4674890

Randomised Leader Election Protocol
8 3.0 × 108

Bounded Open Queueing Network
70 3.3 × 1010

Dining Philosophers
80 1.4 × 1050

Runway Safety Monitor
832 1.0 × 1011

Aloha Network Protocol
100 6.5 × 1031

• The events fired, EVF, is the number of events fired on a node by an anticipated firing
task.

• The moving minimum, MM, is the minimum of number of MDD levels between the
node considered for anticipated firing, and the node that is being saturated by the
main thread.

• The firing level FL is the number of MDD levels above the node considered for antici-
pated firing, that events will be fired for.

We present the results for our benchmark models in Figs. 4 and 5, showing the different
heuristic settings we tried. For the default settings, EVF is 1, MM is unset and FL is 1. We
show the run-time differences when employing heuristics by changing EVF to 2, MM to 3
and FL to 3.

For five of the models, a run-time improvement is made by the anticipated firing algorithm
over the sequential Saturation algorithm. The improvements are approximately between 5%
and 20% over the sequential algorithm. Slowdowns are relatively small, with the largest
approximately 10% less than the sequential algorithm. Typically, the largest increase in speed
is observed between cores 1 and 2, while cores 3 and 4 tend to make little difference to the run-
time. This suggests that relatively small amounts of useful work are performed on these cores,
or that not enough anticipation tasks are created. On one core, the algorithm demonstrates
a slowdown across all models. This is due to the instrumentation of the Pthreads library,
and the code overhead from mutex locks that causes a small parallel overhead. Any further

10

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

FMSDefault
EVF=2
MM=3
FL=3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

QueensDefault
EVF=2
MM=3
FL=3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

BQDefault
EVF=2
MM=3
FL=3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

PhilosophersDefault
EVF=2
MM=3
FL=3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

KanbanDefault
EVF=2
MM=3
FL=3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

LeaderDefault
EVF=2
MM=3
FL=3

Figure 4: Run-time results for the anticipated firing algorithm (1).

11

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

AlohaDefault
EVF=2
MM=3
FL=3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

RSMDefault
EVF=2
MM=3
FL=3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

SlotDefault
EVF=2
MM=3
FL=3

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 3 4

R
el

at
iv

e
ru

nt
im

e

Cores

RobinDefault
EVF=2
MM=3
FL=3

Figure 5: Run-time results for the anticipated firing algorithm (2).

slowdowns on the other cores are caused by synchronisation, since this is the only way in
which the threads used for anticipated firing can interfere with the main thread. The use of
heuristics makes a small and unpredictable difference to the run-time across all models, where
the largest difference in run-time for employing a heuristic is around 5%. This would suggest
that more complex factors influence the amount of useful work that can be performed.

Our results suggest that anticipated firing is useful for facilitating small run-time im-
provements on several models without significantly impacting on the state-space generation
task. This is due to the use of idle processors without interfering with the main task of
saturating the root node. Greater run-time improvements are not possible by employing
heuristics for creating tasks and selecting events based on the measures we defined.

5 CONCLUSIONS

We investigated an anticipated firing Saturation algorithm on a shared-memory architecture,
namely on multi-core PCs. We began by examining the potential savings that could be made
by employing the method, noting that the optimal strategy of choosing which firing calls to
anticipate is likely to be an NP-complete problem. We then implemented the anticipated
firing algorithm using a thread pool to schedule anticipated work on idle cores.

12

The results from running the algorithm on our benchmark showed that using anticipated
firing with Saturation can facilitate small run-time improvements on several benchmark mod-
els without incurring high parallel overheads, but employing simple heuristics for selecting
events was unable to improve either the run-time or scalability of the algorithm. Thus, a
more optimal strategy for selecting firing tasks is required for achieving greater run-time
improvements, which we will leave for future work.

Acknowledgements. We wish to thank Gianfranco Ciardo for several fruitful discussions
on the topic of anticipated firing.

REFERENCES

[1] Abramson, N. and Kuo, F. The Aloha system. Computer Networks, pp. 501–518, 1973.

[2] Butenhof, D. R. Programming with POSIX threads. Addison-Wesley, 1997.

[3] Chung, M.-Y. and Ciardo, G. Saturation NOW. In QEST, pp. 272–281. IEEE, 2004.

[4] Chung, M.-Y. and Ciardo, G. A dynamic firing speculation to speedup distributed
symbolic state-space generation. In IPDPS. IEEE, 2006.

[5] Chung, M.-Y. and Ciardo, G. A pattern recognition approach for speculative firing
prediction in distributed saturation state-space generation. In PDMC, vol. 135(2) of
ENTCS, pp. 65–80, 2006.

[6] Chung, M.-Y., Ciardo, G., and Yu, A. J. A fine-grained fullness-guided chaining heuris-
tic for symbolic reachability analysis. In ATVA, vol. 4218 of LNCS, pp. 51–66. Springer,
2006.

[7] Ciardo, G., Jones, R., Miner, A., and Siminiceanu, R. Logical and stochastic modeling
with SMART. Performance Evaluation, 63:578–608, 2006.

[8] Ciardo, G., Lüttgen, G., and Miner, A. Exploiting interleaving semantics in symbolic
state-space generation. Formal Methods in System Design, 31(1):63–100, 2007.

[9] Ciardo, G., Lüttgen, G., and Siminiceanu, R. Efficient symbolic state–space construction
for asynchronous systems. In ICATPN, vol. 1839 of LNCS, pp. 103–122. Springer, 2000.

[10] Ciardo, G., Lüttgen, G., and Siminiceanu, R. Saturation: An efficient iteration strat-
egy for symbolic state-space generation. In TACAS, vol. 2031 of LNCS, pp. 328–348.
Springer, 2001.

[11] Ciardo, G., Marmorstein, R. M., and Siminiceanu, R. Saturation unbound. In TACAS,
vol. 2619 of LNCS, pp. 379–393. Springer, 2003.

[12] Cimatti, A., Clarke, E. M., Giunchiglia, F., and Roveri, M. NUSMV: A new symbolic
model checker. Software Tools for Technology Transfer, 2(4):410–425, 2000.

[13] Clarke, E., Grumberg, O., and Peled, D. Model Checking. MIT Press, 1999.

13

[14] Ezekiel, J. and Lüttgen, G. Measuring and evaluating parallel state-space exploration
algorithms. In PDMC, ENTCS (To Appear), 2007.

[15] Ezekiel, J., Lüttgen, G., and Ciardo, G. Parallelising symbolic state-space generators.
In CAV, vol. 4590 of LNCS, pp. 268–280. Springer, 2007.

[16] Ezekiel, J., Lüttgen, G., and Siminiceanu, R. Can Saturation be parallelised? On the
parallelisation of a symbolic state-space generator. In PDMC, vol. 4346 of LNCS, pp.
331–346. Springer, 2007.

[17] Graf, S., Steffen, B., and Lüttgen, G. Compositional minimisation of finite state systems
using interface specifications. Formal Aspects of Computing, 8(5):607–616, 1996.

[18] Grumberg, O., Heyman, T., Ifergan, N., and Schuster, A. Achieving speedups in
distributed symbolic reachability analysis through asynchronous computation. In
CHARME, vol. 3725 of LNCS, pp. 129–145. Springer, 2005.

[19] Grumberg, O., Heyman, T., and Schuster, A. A work-efficient distributed algorithm for
reachability analysis. Formal Methods in System Design, 29(2):157–175, 2006.

[20] Heyman, T., Geist, D., Grumberg, O., and Schuster, A. Achieving scalability in parallel
reachability analysis of very large circuits. In CAV, vol. 1855 of LNCS, pp. 20–35.
Springer, 2000.

[21] Itai, A. and Rodeh, M. Symmetry breaking in distributed networks. Information and
Computation, 88(1):60–87, 1990.

[22] Kam, T., Villa, T., Brayton, R. K., and Sangiovanni-Vincentelli, A. Multi-valued deci-
sion diagrams: Theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

[23] McMillan, K. Symbolic Model Checking. Kluwer, 1993.

[24] Milvang-Jensen, K. and Hu, A. J. BDDNOW: A parallel BDD package. In FMCAD,
vol. 1522 of LNCS, pp. 501–507. Springer, 1998.

[25] Miner, A. S. and Ciardo, G. Efficient reachability set generation and storage using
decision diagrams. In ICATPN, vol. 1639 of LNCS, pp. 6–25. Springer, 1999.

[26] Pastor, E., Roig, O., Cortadella, J., and Badia, R. M. Petri net analysis using boolean
manipulation. In PNPM, vol. 815 of LNCS, pp. 416–435. Springer, 1994.

[27] Siminiceanu, R. I. and Ciardo, G. Formal verification of the NASA runway safety
monitor. Software Tools for Technology Transfer, 9(1):63–76, 2007.

[28] Stornetta, T. and Brewer, F. Implementation of an efficient parallel BDD package. In
DAC, pp. 641–644. ACM, 1996.

[29] Tilgner, M., Takahashi, Y., and Ciardo, G. SNS 1.0: Synchronized network solver. In
ICATPN, pp. 215–234, 1996.

14

A PSEUDO-CODE FOR THE SATURATION ALGORITHM

Saturate(in k:lvl ,p:idx)

Update p, a node at level k not in UT [k], in–place, to encode N ∗
≤k(B(p)).

declare e:event ;

declare L:set of lcl ;

declare f ,u:idx ;

declare i,j:lcl ;

declare pCng:bool ;

1. repeat

2. pCng ⇐ false;

3. foreach e ∈ Ek do

4. L ⇐ Locals(e, k, p);

5. while L 6= ∅ do

6. i ⇐ Pick(L);

7. f ⇐ RecFire(e, k−1, p[i]);

8. if f 6= 0 then

9. foreach j ∈ N k

e (i) do

10. u ⇐ Union(k−1, f, p[j]);

11. if u 6= p[j] then

12. p[j] ⇐ u; pCng ⇐ true;

13. if N k

e (j) 6= ∅ then

14. L ⇐ L ∪ {j};

15. until pCng = false;

RecFire(in e:event ,l:lvl ,q:idx):idx

Build an MDD rooted at s, a node at level l, in UT [l], encoding N ∗
≤l(Ne(B(q))).

Return s.
declare L:set of lcl ;

declare f ,u,s:idx ;

declare i,j:lcl ;

declare sCng:bool ;

1. if l < Last(e) then return q;

2. if Find(FC[l], {q, e}, s) then return s;

3. s ⇐ NewNode(l);

4. sCng ⇐ false;

5. l ⇐ Locals(e, l, q);

6. while L 6= ∅ do

7. i ⇐ Pick(L);

8. f ⇐ RecFire(e, l−1, q[i]);

9. if f 6= 0 then

10. foreach j ∈ N l

e(i) do

11. u ⇐ Union(l−1, f, s[j]);

12. if u 6= s[j] then

13. s[j] ⇐ u; sCng ⇐ true;

14. if sCng then Saturate(l, s);

15. Check(l, s); Insert(FC[l], {q, e}, s);

16. return s;

15

Generate(in s:array[1..K] of lcl):idx

Build an MDD rooted at r, a node at level K, encoding N ∗
E (s) and return r, in

UT [K].

declare r,p:idx ;

declare k:lvl ;

1. p ⇐ 1;

2. for k = 1 to K do

3. r ⇐ NewNode(k); r[s[k]] ⇐ p;

4. Saturate(k, r); Check(k, r);

5. p ⇐ r;

6. return r;

Union(in k:lvl , p:idx , q:idx):idx

Build an MDD rooted at s, in UT [k], encoding the Union of the nodes p and q at
level k. Return s.
declare i:lcl ;

declare s,u:idx ;

1. if p = 1 or q = 1 then return 1;

2. if q = 0 or p = q then return q;

3. if p = 0 then return p;

4. if Find(UC[k], {p, q}, s) then return s;

5. s ⇐ NewNode(k);

6. for i = 0 to nk - 1 do

7. u ⇐ Union(k−1, p[i], q[i]);

8. s[i] ⇐ u;

9. Check(k, s);

10. Insert(UC[k], {p, q}, s);

11. return s;

Find(in tab, key , out v, sat:bool):bool

If (key , x, y) is in hash table tab, set v to x and sat to y and return true . Else,
return false.

Insert(inout tab, in key , v , sat:bool)

If key is not (0, 0) insert (key , v , sat) in hash table tab, if it does not contain an
entry (key , ·, true).

Locals(in e:evnt , k:lvl , p:idx):set of lcl

Return all of the local states in p locally enabling e. If there are no states in p

locally enabling e then return ∅.

Pick(inout L:set of lcl):lcl

Remove and return an element from L.

NewNode(in k:lvl):idx

Create p, a node at level k with arcs set to 0. Return p.

Check(in k:lvl , inout p:idx)

If p, a node at level k not in UT [k], duplicates q, in UT [k], delete p and set p to
q. Else, insert p in UT [k]. If p[0] = · · · = p[nk−1] = 0 or 1, delete p and set p to
0 or 1.

16

B C CODE FOR COMPUTING IDEAL RUN-TIME SAVINGS

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define SAT 0

#define FIRE 1

int runtime;

struct list_item {

int li_type;

int level;

int index;

int event;

int sat_time;

int end_time;

int dur;

list_item *next;

list_item(int, int, int, int, int, int, int, list_item *);

};

list_item::list_item(int w, int k, int p, int e,

int st, int et, int d, list_item *n) {

li_type = w;

level = k;

index = p;

event = e;

sat_time = st;

end_time = et;

dur = d;

next = n;

}

struct list {

list_item *head;

list_item *tail;

list();

void load();

void add(list_item *);

void sort();

int process();

int savings();

};

list::list() {

head = tail = NULL;

}

17

void list::add(list_item *t) {

if (head == NULL)

head = tail = t;

else {

tail->next = t;

tail = tail->next;

}

}

void list::load() {

char s[1000], *tok[20];

while (!feof(stdin)) {

fgets(s, 1000, stdin);

if (strstr(s, "ANTICIPATE") !=NULL) {

tok[0] = strtok(s, "(");

tok[1] = strtok(NULL, ",");

tok[2] = strtok(NULL, ", e");

tok[3] = strtok(NULL, ")");

tok[4] = strtok(NULL, " "); // done

tok[5] = strtok(NULL, " "); // at

tok[6] = strtok(NULL, " ,"); // time

tok[7] = strtok(NULL, " :"); // duration

tok[8] = strtok(NULL, ", <"); // dur value

tok[9] = strtok(NULL, "<,"); // empty

tok[10] = strtok(NULL, "<,"); // lev

tok[11] = strtok(NULL, " >"); // idx

tok[12] = strtok(NULL, " "); // saturated

tok[13] = strtok(NULL, " "); // at

tok[14] = strtok(NULL, " "); // sat_time

int flv = atoi(tok[1]);

int fid = atoi(tok[2]);

int fev = atoi(tok[3]+2);

int fet = int(atof(tok[6]));

int fdr = atoi(tok[8]);

int slv = atoi(tok[10]);

int sid = atoi(tok[11]);

int stm = int(atof(tok[14]));

list_item *its = new list_item(SAT, slv, sid, 0, stm, stm, 0, NULL);

list_item *itf = new list_item(FIRE, flv, fid, fev, stm, fet, fdr, NULL);

add(its);

add(itf);

}

18

else if (strstr(s, "al time for s") !=NULL) {

tok[0] = strtok(s, " ");

for (int i=1; i<8; i++) tok[i] = strtok(NULL, " ");

double rt = atof(tok[7]);

runtime = (int) (1000000.0*rt);

}

}

}

int collapse(list_item *l, int stm, int fbt, int fet) {

int jump = fbt - stm; // interval between end of saturate to begin firing

int durf = fet - fbt;

// - every event falling within the interval [begin_fire .. end_fire]

// is moved back by adv units

// - every event after end_fire

// is moved back by fet-fbt (= duration of fire) units

list_item *p = l;

while (p!=NULL) {

int begin_fire = p->end_time - p->dur;

if (begin_fire >= fbt && begin_fire <= fet) {

p->end_time -= jump;

}

else if (begin_fire > fet) {

p->end_time -= durf;

}

// also adjust saturation time for each item

if (p->sat_time >= fbt && p->sat_time <= fet) {

p->sat_time -= jump;

}

else if (p->sat_time > fet) {

p->sat_time -= durf;

}

p = p->next;

}

return durf;

}

19

int list::process() {

int savings = 0;

for (list_item *p = head; p != NULL; p = p->next) {

if (p->li_type==FIRE) {

int stm = p->sat_time;

int fet = p->end_time;

int fbt = fet - p->dur;

if (stm + p->dur < fbt) {

printf("\n\nAnticipating FIRE(%d,%d, e%d):

moved from %d to %d\n", p->level, p->index, p->event, fbt, stm);

savings += collapse(p, stm, fbt, fet);

}

else {

printf("\n\nFIRE(%d,%d, e%d) can no longer be anticipated.\n",

p->level, p->index, p->event);

}

}

}

return savings;

}

int list::savings() {

int savings = 0;

for (list_item *p = head; p != NULL; p = p->next) {

if (p->li_type==FIRE) {

savings += p->dur;

}

}

return savings;

}

int main(int argc, char **argv) {

list *l = new list;

l->load();

int ideal_savings = l->savings();

l->sort();

int real_savings = l->process();

printf("\n\nRelative savings: %d/%d (%6.2f\%)\n", real_savings, ideal_savings,

((double)(100.0*real_savings))/((double)ideal_savings));

printf("Total runtime: %d ms\n", runtime);

printf("\nIdeal savings: %d/%d (%6.2f\%)\n", ideal_savings, runtime,

((double)(100.0*ideal_savings))/((double)runtime));

printf("\nComputable savings: %d/%d (%6.2f\%)\n", real_savings, runtime,

((double)(100.0*real_savings))/((double)runtime));

return 0;

}

20

