
1

Model-checking Part of a Linux File System*

Andy Galloway†, Jan Tobias Mühlberg†, Radu Siminiceanu‡ and Gerald Lüttgen†

†Department of Computer Science, University of York, UK
‡National Institute of Aerospace (NIA), Hampton VA, USA

Abstract

We present our experiences with model checking part of a Linux file system. The
work is set in the context of Hoare’s verification grand challenge, and, in particular,
Joshi and Holzmann’s mini-challenge to build a verifiable file system. The primary
aim of the work was to construct a larger scale case study upon which to measure our
own research into model-checking technology. However, the choice of case study
material was influenced by the aforementioned mini-challenge. The secondary aim of
the work was to add to the existing confidence in the Linux code, for example by
“testing” improbable situations through exhaustive model checking. Two models were
produced: a Promela model, which was analysed using SPIN, and a Petri-Net-based
model, which was analysed using versions of the SMART model-checker. The
approach adopted was incremental, initially focussing on the basic functions of
Linux’s Virtual File Systems layer. The report presents intermediate results.

* We gratefully acknowledge the support of the UK EPSRC, who funded the research under grant
GR/S86211/01.

2

Contents

 1. Introduction …..…………………………………………………………..….. 4
 2. Aims ………………………...………………………………….………..…... 5
 3. The Linux File System Architecture …...………………………….………… 6

3.1 Concurrency in the VFS ………………………………...……………… 6
3.2 Data Structures in the VFS ……………………………….………...….. 7
3.3 Concurrency and Data Structures ………………………………..…….. 8
3.4 VFS Code Architecture ………………………………………………… 8

 4. Methodology ……………...…………………………………………………. 11
 5. Identifying Key Variables and Structures ……………...……………………. 13

5.1 Results of Analysis of Data Structures ………………………..……….. 14
5.2 Representation and State Space ………………………………….…….. 15
5.3 Identification of Properties of Interest …………………………...…….. 16
5.4 Retrospective Comments ………………………………………...…….. 16

 6. Abstracting from the Linux code ………...……………………...…………... 18
6.1 Modex ………………………………………………………………….. 18
6.2 Pseudocode …………………………………………………………….. 18

 7. The SPIN Model ……………...……………………………………...……… 23
7.1 The Core of the Model …………………………………………...…….. 23
7.2 Transcribing the Pseudocode ………………………………….……….. 24
7.3 Stylistic Considerations ………………………………………….…….. 25
7.4 Consistency Properties and Concurrency ………………….…….…….. 27
7.5 The Test Harness ……………………………………………...……….. 27
7.6 Preliminary Results …………………………………………….….…… 28
7.7 Retrospective Comments …………………………………..…….…….. 29

 8. The SMART Model …………………………...……………………..……… 30
8.1 Related Work Specific to SMART …………………………………….. 30
8.2 Model Components …………………………………………………….. 30
8.3 Modelling Restrictions in SMART …………………………………….. 31
8.4 Illustrative Code Snippets ……………………………………………… 33
8.5 Results for SMART ……………………………………………………. 34
8.6 Preliminary Results for Parallelised SMART ………………….……… 34

 9. Related Work …………………...………………………………….….…….. 37
10. Conclusions …………………………………………………………………. 38
 References …………………………………………………………………... 41
 A. Example of struct Definition …………………………..……………………. 43
 B. Data Abstraction …………..………………………………………...………. 44

B.1 Identifying Fields of Interest ……………………..……………...…….. 44
B.2 Information Modelling …………………………………..…………….. 47

 C. Pseudocode ……………………………………………………….…………. 48
C.1 Miscellaneous Supporting Functions ………………………………….. 48
C.2 Creating a File …………………………………………………...…….. 54
C.3 Deleting a File …………………………………………………...…….. 55
C.4 Creating a Directory ……………………………………………..…….. 56
C.5 Removing a Directory ……………………………...………………….. 57
C.6 Renaming a File or Directory ………………………………………….. 58

 D. Examples from the SPIN model ……………………………………………. 61
D.1 Data Structures in Promela ……………………………………….…… 61

3

D.2 Allocating and Deallocating Nodes ………………………..………….. 61
D.3 Other core functions …………………………………………………… 62
D.4 Supporting Functions …………………………………………….……. 63
D.5 Creating a file …………………………………………………….……. 65
D.6 The Test Harness body ……………………………….………………... 66
D.7 Functions Supporting the Test Harness ……………………………….. 69

 E. Example from SMART Model …………………………………..…………. 72

4

1. Introduction

In [Hoa03], Hoare proposes a 15-year grand challenge which calls on the program
verification community to collaborate on building verifiable programs. At the first
Verified Software: Theories, Tools, Experiments conference [Eth05,MW07], Joshi
and Holzmann [JH05] proposed a more modest mini-challenge, as a significant
stepping stone towards meeting Hoare’s challenge. Their mini-challenge was to build
a verifiable file system, such as a file system conforming to the POSIX interface
standard [Ope03].

Program verification in the context of Hoare’s challenge specifically involves full
demonstration of program correctness, rather than more general uses of the term
“verification” (e.g. testing). Broadly speaking, there are two approaches to program
verification. On one hand there is the constructive approach, in which formal
reasoning is first employed to establish the validity of a specification and then the
correctness of an implementation with respect to such a specification. On the other
hand there is analytical approach, which aims to build a valid abstract model of an
existing implementation and show that this model satisfies some set of correctness
criteria. The former approach is emphasised by methods such as Z [Spi95], B
[Abr96], VDM [Jon90], whilst the latter is the focus of certain “model-checking”
approaches such as SPIN [Hol03].

In this report we present our experiences with a file system case study, in the spirit
of Joshi and Holzmann’s mini-challenge, in which we applied an analytical approach
to verification. The case study involved producing an abstract model of part of the
Linux kernel and analysing the model using two distinct model-checkers, SPIN and
SMART. The report describes the intermediate findings of the project.

The remainder of the report is organised as follows: section 2 describes the aim of
the project and section 3 introduces the Linux file system architecture. In section 4 we
describe the scope and methodology used in the study. Sections 5 and 6 concentrate
on abstraction; section 5 explains how the variables and data structures of the Linux
file system were abstracted, and section 6 focuses on abstraction of the Linux code
(i.e. algorithms). Sections 7 and 8 discuss the models produced by the study – one in
Promela/SPIN and one in SMART. Section 9 presents related work, and section 10
presents the conclusions of the study. There are five appendices, which cover an
example of part of a Linux header file, the information abstraction process, the
pseudocode produced by abstracting the Linux code, extracts from the SPIN model
and extracts from the SMART model.

5

2. Aims

The work described formed part of a larger body of work into efficient symbolic
model-checking for interleaving systems [CLS01,CJMS06,CLM07,ELC07,ELS07,
YCL07a,YCL07b]. In particular, collaborative work between the University of
California, US, Iowa State University, US, the NIA (National Institute of Aerospace),
US and the University of York, UK, has resulted in a tool, SMART [CJMS06], which
implements efficient model-checking algorithms for interleaving systems. The tool
forms important background for the study.

The work had two complimentary aims:

1. To produce a large case study on which the performance of the SMART model-
checker (and prototypes for variants implementing parallelised algorithms)
could be measured and compared.

2. To assess the feasibility of analytical program verification on part of the Linux
kernel.

The first aim was primary. Existing case studies for SMART tended to be modest
sized academic examples, and we were searching for a larger example, of real-world
significance, to provide a further benchmark.

The secondary aim attempted to add to existing confidence in its correctness of the
Linux kernel. In particular, the goal was to assess the effectiveness of model-checking
technology for this purpose – for example, by analysing scenarios that were unlikely
to arise in testing or in subsequent use. Three potential findings were envisaged, with
increasing likelihood: i) the corruption (deviation from intent) of the underlying data
state, deadlock or livelock, leading to an observable error (bug); ii) the (possibly
transient) corruption of the underlying data state, not leading to an observable error
(but at risk of revealing itself in future revisions); iii) an absence of errors, hopefully
contributing to evidence of the correctness of the implementation.

6

3. The Linux File System Architecture

The logical architecture of a Linux file system is shown in Figure 1. The elements
shown are as follows [Bov02]:

- Application: The user program.
- C POSIX library: Provides functions facilitating file access as defined by the

POSIX Standard [Ope03], e.g. open file open(), delete file remove(), make
directory mkdir(), and remove directory rmdir().

 System call interface: Propagates requests for system resources from the
application program into the operating system kernel.

- Virtual File System (VFS): This layer is an indirection layer. It provides the
data structures and interfaces needed for system calls related to a standard
Unix file system. Its main strength is to provide a common abstract interface
allowing many different kinds of specific file systems to coexist. The VFS
data structures are instantiated when a file system is mounted with the
appropriate call addresses into the Specific File System layer. The VFS also
provides some default processing and caching for its data structures. Since the
VFS is used in a multi-threaded environment, serving system calls from within
different process contexts, it incorporates various locking mechanisms in order
to sequentialise concurrent access to file systems.

- Specific File System (e.g. EXT2, EXT3, FAT): This layer provides the
processing supporting a particular file system. The specific file system
operates on the data structures provided by the VFS. Its purpose is to provide
an interface between the VFS and the physical storage by transforming the
VFS data structures into their on-disk representation and back. Therefore it
defines the data structures used by the media representation, and manages the
way elements of the file system are read in from, and written out to, the media.

- Device Drivers: These implement access control – i.e. reading from and
writing to – the physical media.

3.1 Concurrency in the VFS

The VFS runs in a highly concurrent environment in which its interface functions
can be invoked from multiple concurrently executing application programs. Hence,
computer architectures supporting symmetric multi-processing, as well as normal
process preemption caused by scheduling on single processor machines, gives rise to
the indeterminate sequencing of the respective threads. Therefore, mechanisms
implementing mutual exclusion are widely used in order to prevent inconsistencies
arising in this context. In the case of the VFS that means that each internal data
structure consists of multiple mutual exclusive components such as atomic values,
mutexes, reader/writer semaphores and spinlocks (cf. [CRK05]) assuring
sequentialisation of operations manipulating these structures. In addition to this,
several global locks are employed to protect the global lists of data structures while
entries are appended or removed. In order to serve a single system call, usually
multiple locks have to be obtained and released in the right order. Failing to do so can
drive the VFS into deadlock conditions or undefined states due to memory corruption.

7

Application

System call
Interface

C POSIX
Library

Virtual File
System

Specific File
System

Device
Drivers

Process

Kernel

Media

Figure 1. The logical hierarchy of the Linux file system.

3.2 Data Structures in the VFS

Of the information structures which make up the file system, the most important
are super blocks, dentries, and inodes. In most cases the names of these structures are
used in different contexts outside the VFS. In the following we only consider the
VFS-related structure definitions and not their file system specific components or
their on-disk representations. Further details on these structures can be found in
[Bov02] and in the respective parts of the kernel header files.

- super_block objects describe the abstract properties of the file system, such as
its type (e.g. EXT2), the physical device on which it resides, the total size of the
file system and the mount point. They also point to the root dentry, as well as
lists of all further dentries and inodes of the file system, and contain several
structures used for locking. Furthermore, there are several flags defining the
characteristics of the file system (e.g. whether it is read-only). Operations for
manipulating the super block by the VFS and from the system call interface as
well as callback functions for the underlying specific file system are stored as
function pointers. The super blocks of all currently mounted file systems are
stored in a circular doubly linked list. At the device level, similar super block
structures are maintained on the media – many specific file systems (e.g. EXT2)

8

maintain multiple instances of their super block for fault tolerance (and
recovery) purposes. The struct super_block is defined in include/linux/fs.h in the
Linux source hierarchy.

- dentry objects collectively describe the structure of the file system. The dentry
contains the file’s name, though the file need not be a regular file – for example
it can be a directory or device. There is also a shortened version of the name,
which is used in hashing the dentries for speed of access (the Directory Entry
Cache, dcache). Other important fields include: the parent of the dentry (root
points to itself), the dentry’s list of children and siblings, operations for use on
dentries by VFS and from system calls, hard link information (pointers to other
dentries), mount information, a link to the relevant super block, and locking
structures. The dentry also carries a reference to its corresponding inode, as well
as a reference count, which approximately corresponds to the number of
processes currently using the dentry. Dentries do not to have corresponding
structures at the device level, they merely function as a cache for the
information being carried by the corresponding inode structure. The definition
of the dentry struct can be found in include/linux/dcache.h.

- inode objects carry information specific to a file (regular file, directory or
device). This includes, for instance, a backward link to the dentries referencing
the inode, file permissions, file type, file size, operations for use on inodes by
the VFS as well as call backs to the underlying specific file system, device
specific information (for devices) and information about how the file is memory
mapped. At the device level, some specific file systems (e.g. EXT2) use a
structure with the name inode. However, the information carried by the inode is
different at the device level (e.g. subsuming dentry information, sector mapping
rather than memory mapping etc.). The struct inode is defined in
include/linux/fs.h in the Linux source.

3.3 Concurrency and Data Structures

As well as the static view of the data structures used by the VFS, there is an
additional dimension introduced by concurrency. For example, Figure 2 illustrates
how three different processes interact with the same file.

The diagram shows three processes using their own file object, two processes are
using the same hard link to the corresponding inode object. Hence, only two dentry
objects are required, one for each hard link, pointing to the same inode. The
components of this picture which are considered as part of the study (see section 4)
are highlighted.

3.4 VFS Code Architecture

The VFS implementation as provided by Linux 2.6.18 consists mainly of the three
public header files fs.h, namei.h and dcache.h residing in include/linux of the kernel's
source hierarchy. These files define the public interface including the aforementioned
data structures. For example, appendix A provides the definition of the dentry struct
(from dcache.h). Note, however, that most definitions are dependent on other parts of
the Linux kernel and employ various external data types and functions.

9

Figure 2. Data Structures Process Perspective

The actual implementations of system calls provided by the VFS can be found in
the fs subdirectory of the kernel source tree. Given our scope, the files dcache.c,
namei.c, inode.c, stat.c and open.c are of most importance since they contain the logic
for the system calls we are most interested in. The VFS implements system calls such
as creat(), open() and stat(). Most of these calls have a path name argument passed to
them from the calling application program. Resolving these path names and returning
the respective dentry is the central part of the VFS's Directory Entry Cache dcache.

Let us explain the interaction between the different parts of the VFS on the
example of the creat() system call. According to POSIX, the signature of creat() is
defined as:

 int creat(const char *pathname, mode_t mode);

where pathname is the full path to the file which is supposed to be created, and mode
the permissions with which the file should be created. In the following we discard all
permission handling.

The VFS entry point from creat() is the function sys_creat() defined in open.c,
which redirects the system call to

 sys_open(pathname, O_CREAT | O_WRONLY | O_TRUNC, mode);

Hence, creat() is handled as a special case of the open() system call. sys_open() then
calls do_sys_open(), which calls do_filp_open(), which finally invokes open_namei().
The function open_namei() resides in namei.c and represents the main part of the
open routine. It first uses do_path_lookup() to traverse the dentry-representation of
the directory tree, starting either from the root directory or from the current working
directory of the calling process. This involves increasing and decreasing usage
counters (dget()/dput(),from dcache.c) and obtaining locks for dentries belonging to

10

the path. Furthermore, dentries for path components that are not already cached need
to be allocated and filled with data obtained from the specific file system
implementation using real_lookup(). If at least the parent directory of the file to be
created exists, do_path_lookup() will return successfully, passing a pointer to the
parent's dentry. If the target file for the creat() operation does not exist yet, the path
lookup functions will return with a “negative” dentry, i.e. a dentry, which is not
associated with an inode yet. In that case, open_namei() will invoke vfs_creat() in
order to propagate the creation of an inode down to the specific file system and link
the newly created inode to the dentry. At this point the file creation is complete.
Please note that we outline only one path through the open routine, discarding security
checks and error cases for simplicity.

Besides the details given above, the process of creating a file involves obtaining and
releasing several reader/writer semaphores as well as the i_mutex from the parent's
inode and the global spinlocks protecting the global lists of dentries and inodes in
case the execution of the system call is preempted by the scheduler. We will give
more details on this in Section 6.

The source code of the functions involved in creating a file on the VFS level
comprises of roughly 5k lines of code, not including data structure definitions and
macro-expansion. The entire VFS implementation is about 70k lines long.

11

4. Methodology

The approach adopted was incremental, with the aim of starting with a small
abstract model, and then expanding and adding detail. The initial scope, and
incremental direction, was defined in several dimensions:

- We decided to concentrate initially on the generic aspects of the Linux file
system implementation – the Virtual File System systems layer. The aim was to
eventually evolve the model by adding further details supporting a specific file
system (and appropriate media), such as EXT2.

- We initially ruled out multi-host concurrency and decided to model just a limited
number of (single host) processes. In the case of one of the models (the SPIN
model) the decision was taken to start with a single process. The aim was then
to extend this by adding further concurrency i.e. additional processes, and
possibly multiple hosts.

- As a starting point for the modelling activity, we chose to incorporate only the
basic operations on files and directories: create file, remove file, make directory,
remove directory and rename. The intention was to extend this in the future to
include for example mounting, unmounting, links etc. and other POSIX
commands.

- Our approach was to abstract the internal information structures used in
maintaining the file system by selecting certain fields. The intention was to
expand the selected fields later to include further detail. The initial fields of
interest were selected according to their relevance in the scope outlined above –
i.e. relevance to VFS layer, concurrency and basic file system operations.

- For practical purposes it was necessary to impose a limit on the size of the file
system the models were able to maintain. In order to keep state spaces tractable
this limit was set initially to 8 nodes (including root), with the intention to
expand later if viable. The limit of 8 nodes was chosen to give each node (e.g.
dentry, inode) a 3 bit address, and this was a hard limit imposed by the types of
the variables and structures used in the models. We also aimed to be generic
with respect to a soft limit of less than 8 nodes, so that models could be
executed on various sized file systems up to the hard limit1.

It had always been the intention to construct a SMART model of the file system
implementation; we also took the decision to develop a SPIN model. There were two
reasons for this: firstly, the SPIN model would provide a valuable basis for
comparison. Comparisons could be made between models, modelling processes and
the effectiveness of the model-checking support tools. Secondly, at the outset of the
study we believed that the SPIN model would provide a vital intermediate
representation of requirements, from which the SMART model could be developed.
This turned out not to be the case. A pseudocode (incomplete C) representation was
developed to support both modelling activities, and this turned out to be an adequate
basis for both modelling activities to proceed more or less in parallel. SPIN was

1 The soft limit was essentially used to manage state space sizes.

12

chosen, as opposed to modelling languages, because of its maturity, exposure, and
ability to support both compound data structures and concurrency.

As well as the existing SMART model-checker [CJMS06], recent research has
produced prototypes which parallelise the algorithms for use in a shared-memory
(multi-core) setting [ELC07,ELS07]. Thus, in addition to comparing results from the
different models, one of the purposes of the study was to compare results for different
variants of SMART.

Identify key
variables and
information
structures

Identify properties
of interest, define

representation, and
estimate state space

Derive abstraction
of LINUX code
(pseudocode)

Construct
Models and Run

Checks

Review and Add
Features

Figure 3. The process followed by the study.

The reason for building the models, other than to draw comparisons, was to
attempt to find (potential) errors. The search focussed on two principal kinds of error.
Firstly, as part of the process of identifying the information fields of interest we
sought to identify consistency properties. These were relationships between the data
that should hold whilst the file system is in a stable state – i.e. when it is not in the
process of being altered in some way. An example of such a consistency property
might be for instance that the sibling and child fields for a particular dentry do not
contradict the parent fields in its peer dentries. Secondly, locking systems were a key
part of the implementation. They existed to ensure mutual exclusion over access to
parts of the file system structure (e.g. particular dentries), and thus ensure structural
consistency. One of the things we were interested in was whether any situations might
exist (however improbable) that might cause the locking mechanisms to jam – i.e.
result in deadlock or livelock. An example of such a situation might for instance
involve two interdependent processes competing for a spinlock, where their
interdependency prevents the spinlock from ever being released (and thus progress
being made). From a methodological point of view the intention was that both
models would investigate both potential sources of error.

An outline of the process intended to be followed by the study is shown in figure
3. Note that the outline does not show minor iterations. For example, the information
structures identified in the first task initially yielded state spaces that were higher than
desired. A minor iteration could have been shown around these two activities.

13

5. Identifying Key Variables and Structures

The variables and structures were selected for inclusion in the models on the basis
of the scope defined by the methodology. Initially, this involved information relevant
to the VFS level (internal representation), the logical structure of the file system
(parents, siblings, children etc.), and the locking mechanisms (spinlocks, mutexes,
reader/writer semaphores). Consequently, the superblock, dentry and inode structures
were all identified for inclusion, and the most significant issue became which fields
from the structures to include, which to omit, and how to represent/abstract the fields
of interest. Certain other structures were considered initially, such as the file structure
(used to maintain the status of files associated with each inode). However, it was
decided that concentrating on the file system structure itself was more important
initially than modelling access to its contents. Structures such as this were therefore
deferred until future iterations.

The process of identifying the structures and fields of interest was based on the
information contained in the header files from the kernel source, i.e. the struct
definitions for superblocks, dentries and inodes. For each, we considered how each
field was used by the file system implementation (this involved considerable
investigation in cases were the usage was unclear or subtle). Each field was then
assigned a relevance (high, medium or low) according to the scoping rules outlined in
the methodology.

Another important consideration was the allocation and deallocation of memory to
store the data structures of interest. For the superblock this was not a problem, since
there would be just one. However, for dentries and inodes the number of data
structures in use at any particular time would vary; new structures would need to be
allocated and, potentially, old structures would need to be deallocated. Clearly, in
order for any model to be analysable (i.e. have a sufficiently small search space) we
would only have a limited supply of variables with which to work. There were two
options here, and resolving the choice was essential in deciding which fields to
include and which to omit. The first choice was to define a static structure,
representing a maximal file system, bounded in width and depth. In this approach
potential parent and child etc. links would be implicitly inferable from the file system
node in question, and assignment/deassignment could be achieved by marking
whether nodes were in use. The second option was to dynamically allocate from a
pool of available structures, and maintain the parent/child etc. links explicitly. i.e.
produce an abstract model of dynamic memory allocation.

The situation was made more complex by the way that the data structures are
maintained in the file system implementation. In the implementation a data structure
can have three different kinds of status. It can be allocated and assigned (in use, part
of the file system), allocated but deassigned (not part of the file system structure but
not deallocated), and deallocated. This is so that reuse and deallocation of unused
nodes can occur efficiently2.

We decided on a strategy based on abstract dynamic memory. The rationale
behind this was twofold: firstly it allowed for greater flexibility in file system
structures we would be able to model check; secondly, it would be a more faithful
model of the implementation both in terms of the way structures are allocated and
assigned, and in the way the overall file system structure was maintained (i.e. with
explicit links).

2 i.e. by a separate low-priority clean-up process.

14

A final consideration was whether (and how) to model the dcache. The dcache
involves a hash table allowing efficient access to dentries based on (part of) their
name. The issue was whether, strategically, we wanted to incorporate the hash table
and hashing functions, and how much it was going to cost us in terms of variable
space. Clearly, whilst the hash table speeds up access to data structures in the
implementation, its inclusion was likely to slow down an exhaustive exploration of
the state space of a prospective model (and involve more memory).

Initially we aimed to include the dcache and hashing functions, but after iterating
around the process of representing the variables of interest and estimating state space
sizes (see the sequel), we decided to omit it. We decided instead to concentrate on
modelling the core functionality of the file system. Where the dcache and hashing
functions were used in the implementation (i.e. to find a dentry corresponding to a
name), these could be modelled as simple searches across the small pool of dentries
available for allocation. Thus it was possible to model the effect of hashing and
retrieval and localise the impact of not having a hash table when abstracting the
implementation’s algorithms.

5.1 Results of Analysis of Data Structures

Having resolved the issues of dynamic memory allocation and the dcache it was
possible to stabilise the fields of interest in the structures we needed. Appendix B.1
shows the final tables for superblocks, dentries and inodes that resulted as part of this
activity.

For the dentry table, for example:

- d_flags, d_alias, d_time, d_fsdata, d_cookie, d_mouted could all be judged
low relevance given the methodological scope.

- d_name was judged low relevance given that there was another field d_iname
used to record a shortened version of the name (for hashing purposes). Since
we would only need a small number of names, d_iname was selected as the
field in which to store the name.

- d_op and d_sb were judged low relevance as the operations on dentries and
each dentry’s superblock could be “hard wired” in the any model given the
scope. I.e. we would only use one set of functions, there would always be only
one superblock.

- d_hash was considered low relevance in the context of our decision not to
model the dcache.

- d_lock was judged high relevance. Locking was considered a high priority
according to our predetermined scope (important for concurrency).

- d_inode, d_parent, d_child, d_subdirs were all judged high relevance, as they
capture the structure of the file system (corresponding inode, parent directory,
siblings and children respectively).

- d_lru and d_rcu were problematic. They were eventually assigned relevances
of medium and high respectively. Preliminary investigation into their use in
the implementation was inconclusive and we were unsure how critical they
would turn out to be in the modelling exercise. This was our best assessment at
the time3.

3 In the end, neither featured significantly in the models produced

15

- d_count was assigned a relevance of high. This was a very important field,
recording whether a dentry was assigned (when above 0) and the number of
processes accessing a dentry (when above 1). It turned out to be especially
important for validating the algorithms abstracted from the implementation.

5.2 Representation and State Space

Once the data structures and fields of interest had been assigned a relevance, the
next stage was to select fields, decide on their representation and estimate the
potential size of the state space. This was achieved initially by selecting the fields of
high relevance; the intention was to review and add lower priority fields if the
potential state space was sufficiently low. The first step was to decide a strategy for
representing each field, and estimate the number of bits required. Appendix B.2
shows the results of this activity.

For example, considering the dentry table:

- d_inode and d_parent were assigned 3 bits each, allowing one to reference a
maximum of 8 inodes and dentries in the file system.

- d_child and d_subdirs were allocated 8 bits each, allowing up to 8 siblings and
children of a dentry to be marked rather than stored as a linked list.

- d_iname was allocated 3 bits allowing for 8 different names (and thus the
maximal width of the directory structure).

- d_count was allocated 3 bits, allowing up to 2 processes to be accessing a
dentry at a time (with space for another 4 processes).

- d_lock was initially assigned 3 bits, allowing for 1 bit giving the status of the
lock, 1 bit for the process (up to 2) holding the lock, and 1 bit indicating a
waiting process4.

- d_rcu was allocated 4 bits5.

Given the bit allocations it was now possible to calculate the potential information
space of a model – that is, the number of states (ignoring control flow) that a model
using the data model would exhibit. Knowing that control flow (i.e. abstract program
counters) would add a further dimension to this calculation, we aimed to keep this to a
minimum; the aim was for a figure of the order 250 – 2500, based on previous model-
checking experience6.

The number of bits needed for each dentry was, for example, 35. For inodes it was
26. 8 of each were needed, yielding (35+26)*8=488, plus a superblock at 9. That
made 2497, which was deemed acceptable – although it meant that including lower
relevance data fields was something that would not be possible until after the initial
modelling phase of the study.

4 Retrospectively, the process ID and wait queue (for fairness purposes) were not significant in the
models produced.
5 Retrospectively, d_rcu was not a significant feature of the models produced.
6 These were the reasonable upper bounds we expected to be able to check. This figure did not include
control flow, additional variables etc., but it was a potential figure – not every possible data state would
be a reachable data state in the model. In addition, the intent was to make the number of nodes in the
system a generic parameter to any model, i.e. what we were attempting to estimate was not the actual
state space but the upper bound on a spectrum of different potential spaces.

16

5.3 Identification of Properties of Interest

Once the relevant fields were decided, it was possible to identify specific
properties of interest. The aim was that these, in addition to more general properties
such as deadlock freedom, would form the basis of the verification exercise. By
showing that such properties held at stable points in the model (i.e. between calls to
the functions operating on the file system), it would be possible to show that the file
system was maintained in a consistent state, and thus infer conclusions about the
correctness of the model (and implementation).

The consistency properties identified were of two forms:

- structural properties: expressing the static relationships between the
information structures of the file system that ought to be maintained by the
functions operating on them.

- reference properties: expressing constraints on the reference counters in the
file system (notably d_count). I.e. that the reference counters were maintained
correctly by the functions operating on the file system.

Examples of structural properties included the following:

- that the inode referenced by each dentry (in d_inode) was assigned7 and
referenced the right dentry (in i_dentry)

- that the siblings and children of each dentry (d_child and d_subdirs
respectvely) were assigned and that their parent references (d_parent) agreed.

There was one important reference property, which was:

- that the d_count was always maintained at a sensible value a stable points in
the model (i.e. when no process was accessing the file system). The sensible
value depended upon whether the model was designed to deallocate unused
nodes immediately (then d_count then should always be 1 for allocated nodes)
or whether it was designed to mark nodes for deferred deletion (d_count could
also carry a 0 value). Both deallocation strategies were considered. In other
words, the property was designed to check that the operations on the file
system did not cause the reference count to “drift” over repeated calls.

5.4 Retrospective Comments

At the time of writing, has only been possible to go through the process of
abstracting the information structures once. Future work should certainly include a
review of this phase of the study. In hindsight, most of the decisions taken at this
point worked well but a few did not. For example, the decision was taken not to
represent the inode reference count (i_count). The rationale behind this was that
because of our initial scope there would be a one to one relationship between dentries
and inodes in the system. This meant that we ought to be able to use the dentry
reference count (d_count) as a surrogate value for i_count, since they ought always to
be the same. However, this made the code abstraction and modelling phases more
difficult, as disentangling the inode logic (involving i_count) from the dentry logic in

7 “Assigned” meaning part of the file system, i.e. memory allocated and marked as in use (d_count>0).

17

at least one place became problematic (due to concurrency considerations). In
addition, we eventually ended up with several redundant data fields in the models
produced.

Another aspect of this phase of the study that was less effective than hoped was
the use and relevance of the consistency properties identified. One of the reasons for
this was simply that, given constraints in resources, we have not made as much
progress as we would have liked adding the consistency properties to our models.
However, another reason stems from the way the static relationships are maintained
by the implementation, and this aspect was unforeseen. When nodes are added or
removed from the file system the new static relationships are computed locally for the
parent node (and children) affected by the change. However, this is not achieved by
modifying the existing relationships – instead the new relationships are computed
from scratch from the parent (d_parent) references (c.f. the update_parent() function
in pseudocode and models below). Our view was that this devalued the use of certain
structural properties as a basis for verification. In particular, it would perhaps have
made more strategic sense to abstract the algorithm computing the relationships in
question, and verify it independently from the main file system model. This would
have achieved much the same result as including structural properties in the main
model, but would have been a more efficient way of working.

18

6. Abstracting from the Linux Code

Despite our initial hope of automating the process of abstracting a model from the
VFS implementation that correctly reflects the way the VFS handles the creation and
removal of files and directories, it turned out to be one of the most difficult parts of
this case study.

The main reasons for these difficulties can be found in the size of the VFS
implementation, the heavy use of dynamic memory allocation and the utilisation of
function pointers. Furthermore, concurrency issues – an important focus for our
modelling approach – contributed a great deal to the number of model revisions that
were required in order to eliminate errors.

6.1 Modex

Back in 1999, Holzmann and Smith [HS99] developed the tool Modex. It can be
used to mechanically extract high-level verification models for SPIN from
implementation level C code. In order to do so, Modex requires a user-defined test-
harness guiding it through the implementation under consideration. As presented in
the previous section, we already knew which operations and which bits of the VFS
data structures we are interested in, enabling us to define a test driver and to run
Modex on the VFS code.

Unfortunately the tool failed parsing the kernel source. We unsuccessfully
experimented with unmodified and preprocessed source code. Our assumption is that
Modex cannot deal with those fragments of the Linux source that do not comply with
the ANSI C standard or contain compiler-dependent code.

6.2 Pseudocode

 After the realisation that automatically abstracting a model from the VFS sources
was not possible, we decided to manually inspect the code in order to identify the
functions operating on those parts of the VFS data structures we were interested in.
The goal of this step was to provide some abstract pseudocode of the VFS, which
could then be translated into models for SPIN and SMART. We decided to produce
pseudocode in a C-like syntax because this would be fairly close to the original code
as well as to a Promela model for SPIN.
 Although the authors are familiar with the internals of the Linux kernel and the
development of Linux device drivers, none of us had prior experience with the VFS
and the file system infrastructure. In order to avoid doing a completely manual
analysis of the code, which would require us to manually follow function pointer calls
and to perform macro-expansion, we decided to generate call traces into the running
kernel in order to get an impression about what is done in which order. Our initial
hope was to be able to automatically extract a basic model of the locking operations
used in the system calls listed below:

- mount(): Mount a file system. Since we are not modelling the physical storage,
we were mainly interested in understanding what the in-memory view of an empty,
freshly mounted file system is.
- umount(): Not used.
- creat(): Create a file.

19

- open(): Open an existing file (not used) or create new file. Contains the actual
logic for creat().
- close(): Close file opened with open(). Not used.
- unlink(): Remove a file.
- mkdir(): Create a directory.
- rmdir(): Remove a directory.

Those system calls marked as “not used” were initially considered as important.
However, in the end we decided not to include them into the models in order to avoid
extending the model’s state space by introducing per-process lists of open files and an
abstraction of the physical medium as well as an on-disk representation of the VFS
data structures.

To obtain function traces from a running Linux kernel we adopted the KFT8 tool to
work with Linux 2.6.18 and implemented a few simple test drivers that initialised
KFT for a particular system call, did the call in respect of a separate file system used
in our experiments, and obtained the trace. KFT itself employs the finstrument-
functions9 capability of the compiler to add instrumentation callouts to every function
entry and exit which are used to dump the jump and return addresses to a trace log.
With the help of the kernel’s symbol table, the log entries could be translated into the
respective function names. The following listing represents an excerpt of the call trace
for the creat() system call. Addresses have been translated into function names and
most functions related to permission checking as well as operations on the specific
file system layer and the physical device have been removed for the sake of
simplicity:

 sys_creat
 | sys_open
 | | getname
 | | | kmem_cache_alloc
 | | | strncpy_from_user
 | | get_unused_fd
 | | | find_next_zero_bit
 | | | expand_files
 | | filp_open
 | | | open_namei
 | | | | path_lookup
 | | | | | link_path_walk
 | | | | | | __link_path_walk
 | | | | | | | permission
 | | | | | | | do_lookup
 | | | | | | | | __d_lookup
 | | | | | | | | __follow_mount
 | | | | | | | | | lookup_mnt
 | | | | | | | | | dput
 | | | | | | | | | | _atomic_dec_and_lock
 | | | | | | | dput
 | | | | | | | | _atomic_dec_and_lock
 | | | | | | | permission
 | | | | | | dput
 | | | | | | | _atomic_dec_and_lock
 | | | | __lookup_hash
 | | | | | permission

8 Kernel Function Trace, c.f. http://tree.celinuxforum.org/CelfPubWiki/KernelFunctionTrace
9 c.f. http://gcc.gnu.org/onlinedocs/gcc-4.2.2/gcc/Code-Gen-Options.htm

20

 | | | | | cached_lookup
 | | | | | | __d_lookup
 | | | | | | d_lookup
 | | | | | | | __d_lookup
 | | | | | d_alloc
 | | | | | ext2_lookup
 | | | | | | d_instantiate
 | | | | | | | dummy_d_instantiate
 | | | | | | d_rehash
 | | | | | | | __d_rehash
 | | | | vfs_create
 | | | | | permission
 | | | | | dummy_inode_create
 | | | | | ext2_create
 | | | | dput
 | | | | | _atomic_dec_and_lock
 | | | | may_open
 | | | | | permission
 | | | dentry_open
 | | | | get_empty_filp
 | | | | get_write_access
 | | | | file_move
 | | | | generic_file_open
 | | | | file_ra_state_init
 | | fd_install
 | | kmem_cache_free

 As can be seen, the trace gives an excellent overview of the control flow inside the
VFS implementation. It can immediately be noticed that the main logic of sys_creat()
is in sys_open(), which calls path_lookup() in order to traverse the file hierarchy up to
the point at which the file is supposed to be created, and then invokes vfs_create()
performing the actual file creation. We can also see some of the locking related
functionality, namely the

dput
| _atomic_dec_and_lock

calls. However, the view of the VFS we obtained from call traces is incomplete and a
great deal of effort had to be spent in manual code inspection. The main reasons for
this are as follows:

1. The call trace does not reveal what a particular function does on those parts of
the VFS data structures we are interested in.

2. Several important function calls are missing in the trace. That is because some
functions could not be instrumented because they are supposed to be called
from an atomic context in which performing blocking I/O operations (i.e.
writing out a log message) is not permitted.

3. Macros were not instrumented.

The final pseudocode was developed in respect of the decisions taken during
scoping (see section 4) and data abstraction (see section 5). In particular:

1. The models were supposed to have a fixed number of inodes and dentries. We
did not have “real” allocation and deallocation of these structures.

21

2. Each inode was assigned to at most one dentry. We supported neither symbolic
nor hard links.

3. We did not have an underlying specific file system. Hence, “negative” dentries
were only allowed in the intermediate steps of the algorithm and non-empty
inodes without a respective dentry were ruled out.

4. We did not model the hash bucket used by the dcache.

Most of these decisions contributed to simplifying the pseudocode by allowing us
to exclude implementation code handling exceptions and corner cases. However, due
to the huge amount of source code to analyse, and the complexity caused by
concurrency handling and the use of macros in order to refer to the current process’s
context, we sometimes ended up abstracting the intent rather than the implementation
itself. While this process allowed us to abstract the core behaviour of the VFS in
about 3k lines of pseudo code, instead of the 70k LOC of the implementation, it
turned out to be tedious and error prone. Hence, several errors were introduced in the
first versions of the pseudo code, which could only be identified later on in the
verification process. For each error, the model in which the error was identified was
compared with the pseudocode, and then the pseudocode was checked against the
implementation, in order to locate the source of the inconsistency or deadlock.

The following code represents our abstract view of the creat() function. For the
sake of simplicity we decided not to model it as a special case of the open() call. All
the data types used in the code section are basically equivalent to the type declarations
found in the Linux headers. However, those parts of the structs we did not consider
important have been removed. Furthermore, we aimed to restrict the usage of pointers
and cast operations to an absolute minimum. In some cases they are still required in
order to make the pseudo code compile, which is a very helpful feature in order
identify type inconsistencies before actually transcribing the pseudo code into a model
for SMART or SPIN.

/*
 * $Author: muehlber $: $RCSfile: pseudo_creat.c,v $
 * $Revision: 1.11 $, $Date: 2007/11/09 17:51:15 $
 */

/* sys_creat is actually a specific behaviour of sys_open() */
int sys_creat (string path)
{

 lookup_res_t l;
 inode_t itmp;
 dentry_t parent, file;

 l = path_lookup (path);
 parent = *l.parent;
 file = *l.file;

 if (!parent.is_allocated)
 {
 if (file.is_allocated) /* deals with root look up */
 { dput(file); }
 return (ERROR);
 }

22

 down (parent.d_inode->i_mutex);

 if (file.is_allocated && !is_directory (file))
 { up (parent.d_inode->i_mutex);
 path_release (file);
 return (SUCCESS); }
 if (file.is_allocated && is_directory (file))
 { up (parent.d_inode->i_mutex);
 path_release (file);
 return (ERROR); }

 spin_lock (dcache_lock);

 file = allocate_dentry(last_component(path), parent);
 if (!file.is_allocated)
 { spin_unlock (dcache_lock);
 up (parent.d_inode->i_mutex);
 dput (parent);
 return (ERROR); }

 dget (file);

 spin_lock (inode_lock);
 itmp = allocate_inode(file);
 file.d_inode = &itmp;
 spin_unlock (inode_lock);
 if (!file.d_inode->is_allocated)
 { atomic_write (file.d_count, 0);
 dput (parent);
 spin_unlock (dcache_lock);
 up (parent.d_inode->i_mutex);
 return (ERROR); }

The full pseudocode for the system calls sys_creat(), sys_unlink(), sys_mkdir(),
sys_rmdir() and sys_rename() are given in appendices C.2 to C.6. As shown in
Appendix C.1, we also provide pseudo implementations or at least prototypes for
various additional VFS functions such as path_lookup() or path_release(), as well as
for functions that belong to other parts of the kernel’s infrastructure. Examples are
the mutex handlers up() and down() and the spinlock interface provided by
spin_lock() and spin_unlock(). Another important thing to point out is that our data
structures contain additional fields such as the is_allocated field in the dentry and
inode structures. These are required in order to designate a particular dentry or inode
as allocated or released in the absence of real allocation, deallocation and pointer
references. Respectively, functions such as allocate_dentry() or allocate_inode() are
supposed to find and return data structures in a fixed-size array of dentries or inodes,
for which the is_allocated-flag is not set. As a result of this, running out of free inodes
or dentries have to be valid end states in the resulting SPIN and SMART models.

The pseudo code presented in Appendix C, which was derived from the
implementation by manual inspection, has been evaluated by extensive reviewing and
cross-checking against the implementation. This is the highest level of confidence that
can be gained in the pseudo code, in the absence of tools that can automatically
synthesise models from Linux kernel source.

23

7. The SPIN Model

Constructing the Spin model was essentially a two-stage process. The first step
was to produce the core of the model on top of which the pseudocode functionality
could be constructed. This involved defining the data structures and equivalent of
dynamic memory allocation. Once the core of the model was in place the pseudocode
was carefully transcribed into the Promela syntax. This involved taking into account
the details of the interface to the core model as well as certain stylistic choices (see
below). The full model can be found on-line10.

7.1 The Core of the Model

The first step in constructing the core of the model was to translate the data
structures discussed in section 5 into the Promela syntax. Examples of these (for
dentry and inode) are shown in Appendix D.1. The structures derive directly from the
information given in appendix B.2 (information modelling). There are two additional
type definitions, other than those relating to section B.2 and these concern the model
of dynamic memory. The definitions for dentrypool and inodepool introduce the
mechanism by which dentries and inodes are allocated. Each has an array of size
NoofNodes, the generic parameter used to limit the maximum number of nodes in the
file system (8 or less), of structure required (dentry or inode). Each also has a bit array
available (size 8) to record whether the corresponding structure is allocated or not11.

Once the data structures were defined it was possible to model the basic
mechanisms for allocating and deallocating dentries and inodes. Two examples, the
functions for de/allocating dentries are given in Appendix D.2. Note that the variable
dep, used as a parameter to the inline, is (expected to be) a structure of type
dentrypool. Note also that the de/allocation functions are primarily defined in terms of
d_steps, meaning that they are treated as atomic functions in the statespace
construction12. Note finally that if an error occurs in the allocation process, meaning
that all the nodes are already allocated, the allocation function jumps to end. end is
defined as a valid end state, meaning failure to allocate is not treated as an error in the
model.

The final stage in constructing the core of the model was to add the functions
required by (but not defined in) the pseudocode, or needed by the test harness. These
included, for example, low-level file system operations, such as for allocating and
initialising dentries and inodes (allocate_dentry(), allocate_inode()), initialising the
superblock (init_superblock()), and finding named dentries (modelfinddentry()). They
also included low-level functions for manipulating path names (is_prefix(),
concat_element(), prepend(), last_component()). Two examples: allocate_dentry()
and modelfinddentry() (which supersedes the use of the dcache hash table as discussed
in section 5) are included in Appendix D.3. allocate_dentry() is straightforward; it

10 http://www.cs.york.ac.uk/~andyg/filesystem/spinmodel.pml
11 Note that an alternative model of the data structures was explored in which the information was bit-
packed in order to reduce the size of the state vector (and thus memory used in model-checking).
However, the bit-packed version did not produce significant savings in state vector size when used in
conjunction with the SPIN “compression” option. It also required some processing overheads (model
complexity) in the storing and retrieval functions. The approach was abandoned early in the modelling
process.
12 This reduces the size of the state space as intermediate points in the d_step are not represented. It
also allows hiding of the local variables, which reduces the overall size of the state vector.

24

allocates a node using alloc_dentry(), sets the parent and name (both inline
arguments) and sets the remaining fields to their default values (e.g. no children or
siblings). modelfinddentry() searches the dentry pool for a dentry with a specified
parent and name. Note that two assertions are employed to associate constraints with
the points in the model they are expected to hold. These are employed throughout the
model and their use is described in more detail below. For example, if the function is
employed when the parent node is Null valued (equal to the NoofNodes parameter)
then the dentry name being looked up should be root (which has a unique name 0
corresponding to “/”).

7.2 Transcribing the Pseudocode

Transcribing the pseudocode involved translation of the algorithms into the
Promela syntax whilst taking into account the interface to core of the model plus a
few stylistic considerations (see below). The first stage was to transcribe the
supporting functions as given in appendix D. These included: down(), up() (for
mutexes); spinlock_lock(), spinlock_unlock() (for spinlocks); dget(), dput(),
path_release() (for maintaining d_count); is_directory() (to establish the status of a
dentry); get_dentry() (for looking up named dentry); and update_parent() (for
deriving the new child/sibling relationships). With these functions in place it was then
possible to transcribe the path_lookup() function, which was integral to every system
call we were modelling.

The functions get_dentry(), update_parent() and path_lookup(), the most
important of the supporting functions, are given in appendix D.4.

get_dentry() is the supporting function which looks up a dentry for a specific
parent and name. It interfaces to modelfinddentry(), given in D.3, the model-specific
version of the look up process described above. Note the use of the assertion to check
the value of d_count – this is discussed in further detail below.

update_parent() is the function which calculates the new child and sibling
relationships for a particular parent node in the file system. It works by scanning the
dentry pool for nodes having the correct parent, constructing a child and sibling list as
it goes. Then, in a second pass, the parent’s children field and its children’s sibling
fields are updated accordingly.

path_lookup() is the key supporting function. It is used to find a dentry
corresponding to a particular path name as well as its parent in the path, and is the
basis of all the system calls we modelled. If the function is successful, it returns the
node and its parent, and has the side effect of increasing the d_count on the nodes
returned (reflecting that they are being accessed). The reason why the logic of
path_lookup() is so elaborate is the number of cases that need to be treated as distinct.
– for example the treatment of root, which returns a null parent. There are also
additional branches dealing with, for example, next item in path found/not found, end
of path reached etc. Note also that one of the parameters to path_lookup() is a cwd13

that is prepended to the supplied path in the case where the first item in the path is not
root. Although this facility was used at various points in the evolution of the model, it
was not required by the final test harness.

The second and final stage of the transcription process was to incorporate the
system call pesudocode into the model. For example, the Promela function for
sys_creat() is given in appendix D.5. sys_creat() is probably the least complex of the

13 I.e. current working directory.

25

system calls. However, like path_lookup(), it is complicated by the number of distinct
cases that need to be considered. It begins by using path_lookup() to retrieve the
dentry of the file to be created (if it exists) as well as its parent (if it exists). If the
parent exists it obtains its associated mutex. Otherwise it returns an error (with some
special handling of the root case to redecrement its d_count i.e. dput() it). There are
several cases to consider if the parent exists:

- its child exists and is not a directory: in this case the d_count of parent and
child are redecremented using path_release() and the mutex is released. Note
that this is not treated as an error case because sys_creat() has been derived as
a special case of sys_open().

- its child exists and is a directory: in this case the d_count of parent and child
are redecremented using path_release() and the mutex is released. The error
flag is set to indicate an error.

- the child does not exist: in this case the file is created by spin locking the
dcache, extracting the last element of the path (the file name), allocating a
dentry with the appropriate name and parent, incrementing the dentry’s
d_count, locking all the inodes, allocating a new inode and associating it (in
both directions) with the dentry, releasing the inode lock, updating the child
and sibling links for the parent and its children, decrementing the parent and
child’s d_count (using path_release()), unlocking the dcache and releasing the
parent’s mutex (obtained earlier if the parent exists).

Note that sys_creat() also contains a couple of assertions. These are discussed in
the next section.

7.3 Stylistic Considerations

There were several stylistic considerations (or design decisions) taken into
account whilst constructing the SPIN model. The most important of these were the
use of assertions and the design of the variable space.

The implementation (and therefore pseudocode) does not contain assertions – it
would be unwise to include code that might halt the operating system. Instead a more
defensive style of programming is employed. Properties tend to be checked and
appropriate action taken in either case, where they hold and where they do not. This
has two effects: firstly it makes the implementation robust against errors, and
secondly, the generic nature of functions designed this way can simplify the
algorithms.

Good example of this style can be seen in the pseudocode for dget() and dput()
(see appendix C.1), where the value of d_count is checked before increment or
decrement. This is to guard against a dentry becoming accidentally reassigned
(respectively deassigned). However, the logic was also exploited at least once in the
pseudocode of one system call, which called dput() in a situation where it would
possibly have no effect. This simplified the algorithm slightly.

Conversely, when model-checking we are happy for the system to “halt” – it
draws our attention to potential problems in the system being modelled (if any exist)
and, more importantly, helps establish the validity of the model. For this reason we
embraced the use of assertions in the SPIN model.

26

Assertions were added to the SPIN model during the transcription process from
the pseudocode. This meant that the transcription was not merely a syntactic
translation of the pseudocode in a number of ways:

- Assertions were added in situations where certain conditions were expected to
hold. These included situations where the logic of the pseudocode indicated an
assertion ought to hold, as well as some model-specific situations such as
correct use of the interface to the core of the model

- Assertions were added to replace some “defensive style” if statements such as
in dget() and dput().

- if statements were added in places to guard the use of functions where
“defensive style” ifs had been replaced by assertions. E.g. where dput() was
used.

Examples of first kind of assertion can be seen in the functions modelfinddentry()
(appendix D.3), update_parent() (appendix D.4) and path_lookup() (appendix D.4).
modelfinddentry() contains core model interface assertions – that the dcache is locked
and that if the parent is null the name is root (0). update_parent() contains a logical
assertion that update_parent() is only called with a directory as an argument.
path_lookup() contains the logical assertion that after the cwd has been prepended to
the path the path must start with root (0). Examples of the second kind of assertion are
in get_dentry() (appendix D.4) and sys_creat() (appendix D.5). get_dentry() contains
an assertion which replaces the check in the pseudocode (see appendix C) that dget()
succeeded. sys_creat() contains two assertions checking that the allocation of a dentry
and inode succeeded, replacing checks in the pseudocode – this is possible because of
the way the model treats failure to allocate as successful termination.

The model currently contains 50 or so such assertions amounting to approximately
3% of the model.

The other important stylistic consideration was the design of the variable space of
the model. SPIN has two kinds of variable, global and local to a process. Additionally,
global variables may be hidden, when they only appear in d_steps so that they are
elided in the state vector (reducing the memory requirements for model-checking).
There are no local variables at the “function call” level. This is because function calls
are modelled by “inline” constructs, which essentially bind interface variables to their
point of reference and replace that point of reference with a suitably modified version
of the inline text. Because of SPIN’s restrictions, and the importance of keeping the
size of the state-vector to a minimum, the design of the variables space (what they are,
how they’re used) is very important. The following describes our approach. Note that
it should be possible to optimise the use of variables further.

There are four kinds of variable in the model:

- Global: these are global SPIN variables and are in scope everywhere in the
model – for example dep (inp), the dentry pool (respectively inode pool) from
which nodes are allocated.

- Scratch variables: these are hidden global SPIN variables only used within
d_step code and therefore not appearing as part of the state-vector. These are
used in various low-level functions (such as in path manipulation) and
functions supporting the test harness.

27

- Local inline parameters: these are SPIN local-to-process variables used locally
within inline functions. They are not declared locally (as this is not permitted),
but supplied as parameters to each inline function.

- Test harness variables: these are local-to-process variables used in the body of
the test harness.

The local inline parameters required the most thought. A pool of local variables
was declared as part of the process body (the test harness). Interface variables to the
inline functions were partitioned into levels according to the usage hierarchy e.g.
lvplus1_1 corresponded to a local variable of size one for use in the next level, and
“passed” from function to subsidiary function. Variables that had clear use e.g.
plulv_4_1, for use in the path_lookup() function were named mnemonically.
Designing the variable space in this way allowed a weak form of encapsulation of
local variables, centralised control of which variables were used where to the process
body, and meant that variables could be reused from function to function minimising
the number of variables required. It also easily allows inlines to be used in more than
one concurrent process over distinct local variables.

7.4 Consistency Properties and Concurrency

So far, due mainly to time constraints, only one consistency property is checked by
the model. This concerns the value of the d_count reference count, which ought to
have a value of 1 for allocated dentries when the system is in a stable state (between
system calls). The property is stipulated as an assertion in a monitor function that
checks the state of the dentry pool (and prints the information during simulation) in
between system calls: printdentries().

The fact that more consistency properties have not been included is unfortunate,
but is tempered by the inclusion of a great many assertions, which was not anticipated
at the outset. Also, as mentioned above (section 5), the implementation details
brought into question the use of certain consistency properties as a mechanism for
checking correctness. Thus, a review of this aspect is needed before more consistency
properties are included.

The ability to perform checks on d_count is in part due to the absence of
concurrency in the model, which simplified the identification of stable points in the
system’s evolution (when no file system operations were in progress). Although
concurrency was a key aim, and the model was designed with concurrency in mind, a
concurrent test harness has not yet been produced for the SPIN model. This was due
to setbacks in the modelling phase and resource constraints.

7.5 The Test Harness

The test harness is the part of the model that “drives” the system calls. Its purpose
is to initialise the file system and then run the system calls in a way that explores all
its possible states. The test-harness has two roles:

- Simulation, which produces textual output and allows the user to interact with
the model. User interactions usually take the form of resolving (apparent) non-
determinism in the model, letting the user guide the model into interesting
states and inspect the model’s behaviour in those states. It is used to validate
the model.

28

- Verification, which produces no textual output (other than the results of the
verification) and does not allow user interaction. It explores all reachable
states and checks that nothing undesirable happens along the way (such as an
assertion being violated).

The file system test harness was designed with the two roles in mind. However,
simulation was hampered by the large number of interactions needed to guide the
model into some particular state – navigation became extremely difficult14. The
solution was to implement user interaction directly in the model using the stdin
channel (keyboard read). A #define15 was used to switch-out the Promela code
relating to stdin (the keyboard reads and use of the results in branch conditions) for
verification purposes. This can be seen in the test harness body shown in appendix
D.6)

The test harness works by implementing a “mock” cd function. This is not a cd
function relating to the kernel (altering cwd and reference counts such as d_count),
but instead a simple way of manipulating the path argument(s) supplied to the system
calls. It allows the user to change the source path (supplied to every system call) and
destination path (supplied to the rename call) each time, by returning to root, moving
down a specified directory, moving up a directory, or staying in the same place (skip).
Two functions, cd() and choose_id(), supporting the manipulation of paths are shown
in Appendix D.7, along with one of the monitoring functions printdentries(). The
latter contains the d_count assertion (consistency property) mentioned above.

Once the source (and destination) path(s) have been set, the user may choose
which system call to invoke and the model reports success or failure. Finally, they can
choose whether to inspect the current state of the system (using the monitoring
functions such as printdentries()). When the –D myverif option is set for verification
purposes all these choices are made on a purely non-deterministic basis.

7.6 Preliminary Results

The simulation phase consisted of a sequence of random tests (to increase
confidence in the validity of the each system call as it was added), followed by a
sequence of structured tests (once all calls had been integrated into the model).
Approximately 100 tests were performed (and reperformed) during the structured
testing phase. They attempted to cover all key scenarios (both successful and
unsuccessful) for a maximum width of 2 nodes, down to depth of 3 nodes. Both types
of testing produced deviations from the expected behaviour. Occasionally these
deviations were due to errors in the model (e.g. caused by inadequate protection of
assertions) and had no bearing on the validity of the pseudocode. However, in several
cases the errors were directly traceable into the pseudocode and implied that the
pseudocode or implementation itself were problematic. In each case, where the
validity of the pseudocode was called into question, the abstraction process was
double checked and found to be in error. The pseudocode was revised accordingly.

Once all of the structured tests were found to succeed as expected, the verification
phase was performed, which involved running the verifier on models with various
maximum file system settings (NoofNodes). Each verification was run a 1.9 GHz
machine, on top of cygwin, running on windows XP. The maximum memory

14 The main reason for this was SPIN’s insistence on prompting the user to resolve non-determinism
even when no actual non-determinism existed, i.e. in most situations where the Promela code branched.
15 Normally supplied as a –D option to the verifier.

29

available was set to 950Mb (in the context of 1Gb RAM), other SPIN options
included: exhaustive search (rather than bit hash), state vector compression, partial
order reduction16. Preliminary results are as follows: The model-checker succeeded
checking at a level of 3 and 4 nodes – no further errors were found. The model-
checker quickly ran out of memory for 5 nodes. Specific results for 4 nodes are as
follows:

Approx Time: 2 minutes
Approx Memory Used: 700Mb

State Vector: 356 byte
Compressed State Vector: 39 byte (+12 overhead)

Compression Ratio: 13%

In addition, several parts of the model were reported as unreachable. On
inspection, this appeared to be due to the branches associated with concurrent
behaviour, which were never taken due to the sequential nature of the test harness.
Attempts were made to analyse 5 and 6 node systems using the bit hashing (non-
exhaustive) option. Results were obtained for 5 nodes, with a state size estimate of
7500, but these were of little significance (hash factor 8-9). At 6 nodes, we were
unable to achieve any results even for bit-hashing – verification runs did not succeed
due to memory problems.

7.7 Retrospective Comments

One of the most important contributions of the SPIN modelling was the model
testing activities. The provided important support for the code abstraction process,
trapping many errors prior to the verification runs. Due to the scheduling of the work,
this turned out to be to the benefit of the SMART modelling phase, which was based
on later versions of the pseudocode. This in turn meant that the SMART model was
able to concentrate more on validating the behaviours particular to concurrency (see
next section).

The preliminary verification results were not so useful. The verifier only ran
successfully up to 4 nodes, and it was unsurprising that no errors were found given
that the testing phase has already explored most (if not all) distinct scenarios relating
to a 4 node file system. The verification problems were caused principally by memory
shortage, which highlights the significance of minimising the complexity of the
model. To this end, future work will involve optimising the variable space, test
harness and SPIN options, as well as running the verifier on a machine with more
available memory.

Other important items of future work include provision for multiple processes, and
a review – and incorporation – of consistency properties. Adding processes and
consistency properties will place more of a burden on the memory requirements for
verification. However, it is hoped that the use of partial order reduction techniques,
in the presence of concurrency, will alleviate some of the overheads.

16 However, the model contained no concurrency so this probably had no effect.

30

8. The SMART Model

The translation of the pseudocode into SMART had to comply not only with the
specifics of the SMART modelling language (Petri nets) but also with other
restrictions imposed by the need to apply the most advanced symbolic model
checking techniques, which are only available under additional constraints. One such
constraint is the Kronecker consistency requirement which, informally, demands that
Petri net constructs that are functionally dependent on each other (Petri net places) be
grouped in the same partitioning subnet.

SMART is designed as a tool for logical and stochastic analysis of concurrent
systems. Modelling software is not the main target of this language. For this reason,
for the translation of the file system pseudocode, we had to manually introduce
program counters into the Petri net. Other limitations of the SMART language (no
data structures, no recursion, no dynamic memory allocation) made the task more
challenging, but did not ultimately hamper the model development.

8.1 Related Work Specific to SMART

From our experience, the VFS model ranks with the most complex systems ever
modelled in SMART. This perspective is not reflected solely by the shear size of the
model (over 2600 lines of SMART code), but also by the inherent complexity of the
system itself. For comparison, two other similar industrial-size applications modelled
in SMART are:

- NASA's Runway Safety Monitor [SC07]: a protocol for detecting incidents on
airport runways. The model is parameterised by the number of aircraft (called
targets) that are monitored, each aircraft being represented by its 3-D (discretised)
coordinates and flight status. The SMART file is 1850 lines long. The state-space
exploration takes under 5 minutes for the smallest relevant set of parameters (1
target, 3x3x3 position grid).

- NASA's clock synchronization [Min93] and self-stabilization protocols [Mal06]
for the SPIDER fault-tolerant architecture. The protocol is parameterised by the
number of nodes, clock wrap-around period, and other protocol related data. The
SMART file size is 1190 lines. The protocol can be instantiated under various
fault assumptions, ranging from benign to symmetric and Byzantine. The smallest
relevant setting is for 4 nodes (3 good nodes and 1 faulty). The tool is not able to
build the state-space for the most complex setting (Byzantine fault, fully
randomised initial state) before running out of memory (on a 16GB machine), but
is still able to analyse partial configurations.

8.2 Model Components

The process of extracting the model variables was similar to that for SPIN. The
abstract model has is parameterised by:

- The (maximum) number of dentries (ND)
- The (maximum) number of inodes (NI)

31

- The number of concurrent processes (NP) making calls to the file-system (this
can also be viewed a parameter not of the file system itself, but of the test
harness for the SMART model);

In principle, the model variables are represented as Petri net places, and instructions
are represented as Petri net transitions. Since the model is parameterised, the fields of
the dentry and inode data structures are represented as arrays.

 for (int i in {1..nd}) {
 place
 d_allocated[i], /* is allocated? flag */
 d_parent[i], /* id of parent: 0=n/a, or 1..ND */
 d_count[i], /* reference count */
 d_lock[i], /* not used */
 d_inode[i], /* id of corresponding inode: 0=n/a, or 1..NI */
 d_subdirs[i]; /* number of subdirectories */
 ...
 }

This is because the SMART modelling language does not support records. The
SMART code is nevertheless quite readable, as the i-th dentry is simply represented
as the collection of all the i-th elements in the above arrays.

The convention adopted for locks and mutexes is to have a positive value
representing “available” and zero for “not-available”. Hence, acquiring a lock/mutex
removes a token form the Petri net place storing the lock value, while releasing a lock
adds a token back to the place.

Additionally, the model has to instrument a program counter (instruction pointer)
for executing the four file operations (create and delete file, make and remove
directory). There is choice of modelling the program counter as an integer variable
(hence a Petri net place in our model) or, equivalently, as an array of Boolean
variables. We opted for the latter approach.

8.3 Modelling Restrictions in SMART

Path Names

We had to circumvent other limitations imposed by the simplicity of the SMART
modelling language. This lack of sophistication is a benefit in many circumstances,
but in the case of software, the modeller is forced to get creative. One such situation is
posed by the need to represent the tree structure of the file system. Lists are not
supported in SMART, therefore we had to adopt an abstraction mechanism that does
not impair the ability to perform a logical analysis of the original (not abstracted)
system.

From the logical point of view, operations with fully qualified filenames
(path+filename) only test for the path name being identical or not with an existing
one. As long as each type of operation is represented in our model, the abstraction is
valid and offers full coverage all possible relevant situations.

For example, in the abstract model, we represent each fully qualified pathname
with an integer. Initially, the value 1 is reserved for the root (‘/’) and value 2 for the
folder ‘/lost+found’ (created at mount time). Any (distinct) file/folder that is created
subsequently is assigned an abstract index. The call to create a dentry is of the form:

32

create(Dentry_idx file_id, Dentry_idx int parent_id), where Dentry_Idx is the type
[1..ND] (ND = size of dentry array)

In the initial state illustrated above (‘/’ and ‘/lost+found’), the next legal create
calls can be only create(i, j), with i in [3..ND] and j in [1..2]

- create(i,1), with i>2, corresponds to adding a child to '/' with any other name
except 'lost+found'

- create(2,1) represents the attempt to create '/lost+found' again; which should
behave accordingly, i.e. does not create a new dentry

- create(1,1) represents the attempt to create the root again; should have similar
outcome: denied

Similarly for the calls create(i,2) (create children of '/lost+found'):

- create(1,2) is illegal
- create(2,2) is illegal
- create(i,2) with i>2 is valid

Besides,

- create(i,j) with j>2 represents an attempt to create a file in a non-existent path

Following a successful create(i,j) (say we requested create(4,1), which corresponds to
sys_creat(string s), s different than '/' or '/lost+found'), we have a new abstract string
present in the system. For clarity, let's assume that '/a' was created. Therefore, the
index 4 represents the new abstraction, given by the equivalence relation: idx==4 iff
string=='/a'. The new system state is: 1='/' 2='/lost+found' 4='/a'.

The next valid create request is of the type create(i,j) with i not in {1,2,4} and j in
{1,2,4}. For example, to create file 'b' as a child of root, we might call:

create(7,1) // – 7 may be replaced by any integer other than 1,2,4 but to create 'b' as
child of '/a' we would call create(7,4)

On the other hand, trying to sys_creat('/a') again is still represented by create(4,1),
while trying to sys_creat 'a' anywhere but in the root is a valid call, which could be

- create(7,4) // if trying to sys_creat('/a/a')

or

- create(7,2) // for sys_create('/lost+found/a')

If '/a' is removed, then index 4 becomes available for any other distinct string not
already in the system. Creating a file to take its place, means we have introduced a
new abstraction function: idx==4 iff filename==<the_new_string>

33

8.4.Illustrative Code Snippets

Below is a code excerpt, illustrating a particular instruction (step number 8) in the
pseudo-code of the create() routine, which tests for the file argument passed to the
routine to be allocated and not be a directory. There are two transitions, one for the
“then” and one for the “else” branch, respectively. Depending on whether the guard
is satisfied or not, the instruction pointer is moved either to line 9 or line 12 of the
code. No other state changes are performed by this step.

 /* ---------- Create step 8 ---------- */
 // --- if (file.is_allocated && is_directory(file))
 for (int i in {1..nd}) {
 trans
 t_create_step8_then[p][i],
 t_create_step8_else[p][i];
 arcs(
 p_create_line8[p]:t_create_step8_then[p][i],
 t_create_step8_then[p][i]:p_create_line9[p],
 p_create_line8[p]:t_create_step8_else[p][i],
 t_create_step8_else[p][i]:p_create_line12[p]
);
 guard(
 t_create_step8_then[p][i]:
 tk(p_file[p])==i & tk(d_allocated[i])>0 & tk(d_subdirs[i])>0,
 t_create_step8_else[p][i]:
 tk(p_file[p])==i & !(tk(d_allocated[i])>0 & tk(d_subdirs[i])>0)
);
 }

Another example, that does transform the state of the system, is illustrated below.
Step 13 in the create() routine allocates dentry #i as a child of d_entry #j. To that
extent, it sets the d_allocated[i], d_count[i] and d_lock[i] to 1, and the value of
d_parent[i] to j. The transition guard enforces that d_entry #i should not be already
allocated. After setting these values, the instruction pointer is moved to line 14 in the
create() procedure.

 /* ---------- Create step 13 ---------- */
 // --- allocate_dentry
 for (int i in {1..nd}) {
 for (int j in {1..nd}) {
 trans
 t_create_step13[p][i][j];
 arcs(
 p_create_line13[p]:t_create_step13[p][i][j],
 t_create_step13[p][i][j]:p_create_line14[p],
 d_allocated[i]:t_create_step13[p][i][j]:tk(d_allocated[i]),
 t_create_step13[p][i][j]:d_allocated[i],
 d_count[i]:t_create_step13[p][i][j]:tk(d_count[i]),
 t_create_step13[p][i][j]:d_count[i],
 d_lock[i]:t_create_step13[p][i][j]:tk(d_lock[i]),
 t_create_step13[p][i][j]:d_lock[i],
 d_parent[i]:t_create_step13[p][i][j]:tk(d_parent[i]),

34

 t_create_step13[p][i][j]:d_parent[i]:j
);
 guard(
 t_create_step13[p][i][j]:
 tk(p_file[p])==i & tk(p_parent[p])==j & tk(d_allocated[i])==0
);
 }
 }

The entire SMART file is too large to be listed here. For reference, we have
included the portion of the file that encodes the create() operation in Appendix E.
The full model is available on-line17.

8.5. Results for SMART

At this stage, the main purpose of the analysis is to determine the tool's ability to
handle the large state-space size of the parameterised model. SMART was able to
complete the reachable space for reasonable values of the parameters, not only for the
trivial cases.

Below is a summary of the state-space generation runs for 1 (table 1) and 2 (table 2)
processes.

8.6 Preliminary Results for Parallelised SMART

In addition to analysing the file system model using SMART, verification was also
performed using a prototype [ELS07] which parallelises the saturation algorithms
used in SMART. The prototype, written in C using the POSIX Pthreads library
[LB98], executes in parallel on a multi-core PC (shared-memory architecture), and
can be directed to use 1 (sequential), 2, 3 or 4 cores.

Preliminary verification results are given in table 3. Note that no attempts have yet
been made to optimise the file system model for efficient parallel analysis.

The results for the file system case study fit with those of a stereotypical “low
parallelism” model. For the parallel FIFO algorithm, only a small (approximately
20%) run-time overhead is introduced on the first core. However, only a small
(approximately 5%) improvement is achieved on the second core with diminishing
improvements on the third and fourth core. This means that the parallel algorithm is
unable to improve over the sequential algorithm on four cores, demonstrating an
approximate 10% slowdown. The memory overhead for the parallel algorithm is
slightly less than 2x, which is a typical memory increase due to the introduction of
upward arcs into the MDD structure, and Pthread mutex locks.

17 http://www.cs.york.ac.uk/~andyg/filesystem/smartmodel.sm

35

params
##D #I

states time(s) mem(KB)

 2 2 283 0.54 291
 2 3 283 0.59 302
 2 4 283 0.65 314
 2 5 283 0.70 325
 2 6 283 0.77 337
 2 7 283 0.82 348
 2 8 283 0.87 360

 3 2 1086 1.11 802
 3 3 2660 2.03 1948
 3 4 2660 2.28 2035
 3 5 2660 2.54 2121
 3 6 2660 2.84 2208
 3 7 2660 3.07 2294
 3 8 2660 3.34 2381
 4 2 3339 2.05 1547
 4 3 20395 8.13 8705
 4 4 80461 13.42 16776
 4 5 80461 15.20 17501
 4 6 80461 17.08 18227
 4 7 80461 18.94 18952
 4 8 80461 20.92 19675
 5 2 9406 3.75 2786
 5 3 110359 20.75 20532
 5 4 951538 52.74 75189
 5 5 5604562 76.92 184571
 5 6 5604562 85.09 187811
 5 7 5604562 92.80 190853
 5 8 5604562 101.29 193977

params
##D #I

states time(s) mem(KB)

 6 2 25163 6.56 4537
 6 3 480011 40.97 39674
 6 4 6827399 126.21 212000
 6 5 87900191 382.34 1430972
 6 6 0 0.00 0
 6 7 0 0.00 0
 6 8 0 0.00 0

 7 2 68874 11.24 7074
 7 3 1814603 79.24 71333
 7 4 37223248 255.54 502398
 7 5 0 0.00 0
 7 6 0 0.00 0
 7 7 0 0.00 0
 7 8 0 0.00 0
 8 2 162523 19.37 10446
 8 3 6228787 145.54 116699
 8 4 170672245 507.87 1059037
 8 5 0 0.00 0
 8 6 0 0.00 0
 8 7 0 0.00 0
 8 8 0 0.00 0

Table 1. State-space generation results for one process

params
##D #I

states time(s) mem(KB)

 2 2 18934 3.43 4331
 2 3 18934 4.02 4488
 3 2 485587 93.28 78968
 3 3 2992118 1139.61 784659

Table 2. State-space generation results for two processes

(NB: The zeroes mean SMART ran out of 4GB of memory).

36

Run-time (s) (Cores) Relative Memory (Cores)
Type 1 2 3 4 1 2 3 4

D=2 I=2 P=1 Sequential: 0.42(s) 65542(b)
fifo 0.50 0.48 0.47 0.47 1.74 1.75 1.78 1.78

chain 0.52 0.51 0.51 0.51 1.77 1.75 1.75 1.75
D=3 I=2 P=1 Sequential: 1.69(s) 195300(b)

fifo 1.88 1.82 1.79 1.78 1.76 1.77 1.78 1.79
chain 1.93 1.92 1.91 1.91 1.78 1.74 1.73 1.73

D=4 I=2 P=1 Sequential: 3.32(s) 295112(b)
fifo 3.80 3.67 3.58 3.53 1.77 1.80 1.82 1.82

chain 3.94 3.90 3.90 3.88 1.78 1.76 1.76 1.75
D=3 I=3 P=1 Sequential: 11.03(s) 887170(b)

fifo 13.34 13.02 12.88 12.64 1.79 1.84 1.85 1.85
chain 13.57 13.54 13.51 13.50 1.80 1.80 1.80 1.79

D=4 I=3 P=1 Sequential: 151.22(s) 4957529(b)
fifo 179.69 168.21 162.10 160.49 1.83 1.88 1.88 1.88

chain 191.20 189.20 188.79 188.74 1.82 1.83 1.82 1.82

Table 3. Run-time and memory results for the file system model.

37

9. Related Work

While techniques for verifying the correct use of file system interfaces represented
as finite state machines are presented in [DLS02] and [DF01], work on verifying
properties for file system implementations as shown in this report is quite rare.

In [AZKR04] a correctness proof for a formalised basic file system implementation
that uses standard file system data structures such as inodes and fixed-sized disk
blocks is presented. It considers data structures which are also covered in our work.
By having a notion of disk blocks, it also deals with their respective on-disk
representation. In the paper, the implementation is proved correct by establishing a
simulation relation between the specification of the file system, formalised as a map
from file names to sequences of bytes and its implementation using the Athena proof
system. The work done by Arkoudas et al. differs from ours as it does not deal with
the verification of a “real” file system implementation and concurrency related issues.
Hence, it does not involve the process of abstracting a model from a given
implementation and its environment.

Two publications dealing with the verification of actual file system
implementations are [YTME04] and [YST+06].

In [YTME04], model checking is used in systematic testing to find errors in the
specific file system implementations EXT3, JFS and ReiserFS. Their verification
system consists of an explicit state model checker running the Linux kernel, a file
system test driver, a permutation checker which verifies that a file system can recover
no matter in what order buffer cache contents are written to disk, and a recovery
checker using the fsck file system recovery tool. The system starts with an initial,
empty file system and recursively generates possible successive states by executing
system calls affecting the file system. After each step the system is interrupted and
fsck is used in order to check whether the file system under test can recover to a valid
state.

[YST+06] uses a similar approach combined with symbolic execution in order to
generate test cases that can be used to crash or exploit a file system implementation.
Both approaches are similar to our work in the sense that they are striving to expose
problems in actual file system implementations that can lead to serious
inconsistencies or security exploits. However, [YTME04] and [YST+06] are based on
runtime verification techniques that cannot exhaustively explore the state space of the
implementation. A big advantage over our work is that these techniques do not require
the tedious and error prone manual abstraction of a model from the implementation,
which was required in our case.

Verification approaches that mechanically analyse the source code of operating
system components and that can be used in order to automatically and exhaustively
identify property violations are presented in [Hen02], [CC+04a] and [BR01]. In
theory these tools are able to prove a file system implementation to be free of
deadlock situations due to improper use of locking mechanisms. However, as shown
in [ML06], the tools also require tedious manual preprocessing of the original source
in order to be able to parse and model check it. According to the experience of the
authors, the amount of man-hours required to prepare the VFS implementation for
being verified with BLAST up to the same extent as shown in this report, would be
equivalent to our approach since similar manual abstractions would be required.

38

10. Conclusions

This report has outlined our experiences model checking part of a Linux file
system. In particular we have described the aims of the project, the domain, the scope
and methodology followed, the abstraction of the data structures used by the file
system, the abstraction of the Linux code and the construction of two models in SPIN
and SMART. These experiences constitute intermediate results in the sense that
additional work is now ongoing, with the aim of maximizing the benefits of the study
(and return on investment).

Successes

Several aspects of the study can be considered as successes. The abstraction of the
data structures, on the whole, worked well – although there were minor difficulties
associated with the decision to use d_count as a surrogate for i_count. Both modelling
phases were also largely straightforward, and each can be considered a success in its
own way. The SPIN modelling phase was particularly useful, through the use of
assertions and structured testing, for validating the sequential aspects of the
pseudocode – although the results for verification were hampered by problems with
memory requirements. On the other hand the SMART model, which was able to
capitalise on SPIN’s analysis of the pseudocode, was able to concentrate on validating
the concurrent behaviour of the pseudocode. The verification results for SMART were
impressive, but limited to features such as deadlock freedom.

Limitations and difficulties

Despite the independent success of the modelling phases there was a key
drawback. During the design and construction of the models there was some drift in
the focus of each, and this meant that comparisons between models were difficult to
infer. In particular:

- restrictions in the SMART modelling language constrained the way
path_lookup() could be modelled, resulting in an abstracted algorithm and less
faithful (cf the pseudocode) interface to the system calls. Conversely, the SPIN
model adhered closely to the pseudocode.

- the SPIN model was sequential and deallocated nodes as soon as they were
unassigned, which was unfaithful with respect to the pseudocode. On the other
hand, the SMART model allowed multi-process concurrency, including
concurrent a clean_up() operation to deallocate unassigned nodes. The
difference was attributable in essence to time lost in testing (for SPIN), when
pseudocode problems were found and resolved.

- the SPIN model contained many assertions, including one consistency property,
whilst the SMART model focussed on concurrency issues, such as deadlock.

- the SPIN model incorporated the sys_rename() system call, whereas the
SMART model elected to prioritise progress on the other four system calls.

Another significant drawback concerned the SPIN verification results, which were
not very useful. Realistically, a 4-node verification in a sequential model does not tell
us very much about the correctness of the pseudocode, let alone the implementation.

39

By far the most severe difficulties concerned the abstraction of the LNUX code,
which was the hardest part of the entire exercise. The manual nature of the abstraction
and the problems in validating the pseudocode make any scientific conclusions about
the correctness of the implementation difficult to infer. Having a faithful abstraction
was key to the aim of adding to the existing confidence in the Linux implementation.
We believe further research is needed in this area.

Better Tools for Abstraction.

Abstracting a faithful model from the VFS implementation turned out to be one of
the most difficult parts of this research project. However, it can also be considered as
one of the most common tasks to be done in post-hoc software verification using
symbolic model checking or theorem proving. Hence we suggest, that future research
should explore this area, enabling the development of automated tools mechanising
this process. An ideal tool for the purpose of model abstraction would require two
inputs. Firstly the program under consideration, secondly a specification stating
precisely which parts of the implementation’s data structures and functions, or which
verification properties a user is interested in. The tool would than be able to
automatically abstract a minimal model of the system in respect of the specification,
dynamic memory allocation and concurrency issues. Actually, tools such as BLAST
[Hen02] are coming close to this goal by using the CounterExample Guided
Abstraction Refinement (CEGAR, cf. [CC+04b]) paradigm. However, to the authors’
knowledge all of them have restrictions regarding the input language, memory
allocation and concurrency. Especially in the context of the verification of operating
system components, restrictions to the programming language accepted by the tool
have the highest impact. That is because these software components are usually not
written in plain ANSI-C but contain architecture and compiler specific code sections
as well as inline assembly. Hence, research on abstracting models from lower-level
intermediate code or even object code might be worthwhile.

Future work

The most immediate source of future work concerns obtaining comparisons between
the SPIN and SMART models. Presently, the two models are so dissimilar that
comparisons are meaningless. In order to bring them into a comparable state the
following work will be undertaken, primarily on the SPIN model:

- the SPIN model’s system call interface will be brought into line with that of
the SMART model. The path_lookup() function will be abstracted
accordingly.

- Multi-process concurrency will be added to the SPIN model, including a
concurrent clean_up() operation.

- The assertions will be removed (once shown to hold). Alternatively, assertions
might be added to the SMART model as “error” transitions.

- Verification of the two models will be executed in comparable settings (i.e. the
same machine, with as much memory as possible).

40

Other areas of future work may include:

- optimisation of the SPIN data space, test harness etc. for increased verification
coverage

- a review of the data structures included in the abstraction
- a review and introduction of additional consistency properties, in line with our

original expectations

Potentially, there is still much to do to add to this study. For one, we have not yet
iterated as per Figure 3, with the aim of adding functionality (e.g. mounting, hard
links) and moving the models closer to the media representation (e.g. modelling the
behaviour of EXT2). The preliminary results presented herein represent a first step.
We hope to continue the work for some time to come.

41

References

[Abr96] J-R Abrial, “The B Book – Assigning Programs to Meanings”, Cambridge
University Press, 1996.

[AZKR04] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, Martin Rinard,
“Verifying a File System Implementation”, LNCS 3308, p. 373-390,
Springer Berlin, Germany.

[Bov02] Daniel P. Bovet, Marco Cesati. "Understanding the Linux Kernel", 2nd
edition. O'Reilly Media Inc, Sebastopol, USA. 2002.

[BR01] T. Ball and S. K. Rajamani, “Automatically validating temporal safety
properties of interfaces”. In SPIN 2001, vol. 2057 of LNCS, pp. 103-122.

[CC+04a] S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav,
“Efficient verification of sequential and concurrent C programs”. Formal
Methods in System Design, 25(23):129-166, 2004.

[CC+04b] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, Helmut Veith,
“Modular Verification of Software Components in C”, Transactions on
Software Engineering (TSE), Volume 30, Number 6, pages 388-402,
June 2004.

[CJMS06] G. Ciardo, R.L. Jones, A.S. Miner, and R. Siminiceanu, “Logical and
stochastic modeling with SMART”, Performance Evaluation, 63:578–
608, 2006.

[CLM07] G. Ciardo, G. Lüttgen, and A.S. Miner, “Exploiting interleaving semantics
in symbolic state-space generation”, Formal Methods in System Design,
31(1):63–100, 2007.

[CLS01] G. Ciardo, G. Lüttgen, and R. Siminiceanu, “Saturation: An efficient
iteration strategy for symbolic state-space generation”, in TACAS, vol.
2031 of LNCS, pp. 328–342. Springer, 2001.

[CRK05] Jonathan Corbet, Alessandro Rubin and Greg Kroah-Hartman, "Linux
Device Drivers". 3rd edition. O'Reilly Media Inc, Sebastopol, USA. 2005.

[DF01] R. DeLine and M. Fähndrich, “Enforcing high-level protocols in low-level
software”. In Proc. ACM PLDI, 2001.

[DLS02] M. Das, S. Lerner, and M. Seigle, “ESP: Path-sensitive program
verification in polynomial time. In Proc. ACM PLDI, 2002.

[ELC07] J. Ezekiel, G. Lüttgen, and G. Ciardo, “Parallelising symbolic state-space
generators”, in CAV, vol. 4590 of LNCS, pp. 268–280. Springer, 2007.

[ELS07] J. Ezekiel, G. Lüttgen, and R. Siminiceanu, “Can Saturation be
parallelised? On the parallelisation of a symbolic state-space generator”,
in PDMC, vol. 4346 of LNCS, pp. 331–346, Springer, 2007.

[Eth05] http://vstte.ethz.ch/
[Hen02] T. A. Henzinger et al, “Temporal-safety proofs for systems code”. In

CAV 2002, vol. 2404 of LNCS, pp. 526-538.
[Hoa03] Tony Hoare, “The Verifying Compiler: A Grand Challenge for

Computing Research”, Journal of the ACM, 50(1), January 2003, pp. 63–
69.

[Hol03] G. J. Holzmann, “The SPIN Model Checker: Primer and Reference
Manual”, Addison-Wesley, 2003.

42

[HS99] G. J. Holzmann and M.H. Smith, “Software Model Checking: Extracting
verification models from source code”, Formal Methods for Protocol
Engineering and Distributed Systems, (Conference Proceedings
FORTE/PSTV99), Kluwer Academic Publ., Oct. 1999, pp. 481-497. See:
http://cm.bell-labs.com/cm/cs/what/modex/

[JH07] Rajeev Joshi and Gerard J. Holzmann, “A Mini Challange: Build a
Verifiable Filesystem”, in [MW07].

[Jon90] C. B. Jones, “Systematic Software Development using VDM”, Prentice-
Hall, 1990

[LB98] B. Lewis and D. J. Berg, “Multithreaded programming with Pthreads”.
Prentice-Hall, 1998.

[Mal06] Mahyar R. Malekpour, "A Byzantine Fault-Tolerant Self-Stabilizing
Protocol for Distributed Clock Synchronization Systems", NASA/TM-
2006-214322

[Min93] Paul S. Miner. "Verification of Fault-Tolerant Clock Synchronization
Systems”. NASA TP-3349, November, 1993.

[ML06] J. T. Mühlberg and G. Lüttgen, “Blasting linux code”. In FMICS 2006,
LNCS 4346, pp. 211 226, 2006.

[MW07] B. Meyer and J. Woodcock (Eds), “Proceedings of Verified Software:
Theories, Tools, Experiments (VSTTE) 06”, LNCS 4171, Springer, 2007.

[Ope03] The Open Group, The POSIX 1003.1, 2003 Edition Specification,
available online at http://www.opengroup.org/certification/idx/posix.html.

[SC07] Radu Siminiceanu, Gianfranco Ciardo, "Formal verification of the NASA
runway safety monitor”, STTT 9(1): p.63-76, 2007

[Spi95] M. Spivey, “The Z Reference Manual – 2nd edition”, Prentice-Hall, 1995.
[YCL07a] A. J. Yu, G. Ciardo, and G. Lüttgen, “Bounded reachability checking of

asynchronous systems using decision diagrams”, In TACAS, vol. 4424 of
LNCS, pp. 648–663. Springer, 2007.

[YCL07b] A. J. Yu, G. Ciardo, and G. Lüttgen, “Improving static variable orders via
invariants”, In Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN), vol. 4546 of LNCS, pp. 83–103. Springer, 2007.

[YST+06] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, Dawson Engler,
“Automatically Generating Malicious Disks using Symbolic Execution”,
Proceedings of IEEE Security and Privacy, 2006

[YTME04] Junfeng Yang, Paul Twohey, Madanlal Musuvathi, Dawson Engler,
“Using Model Checking to Find Serious File System Errors”, OSDI04,
2004

43

Appendices

Appendix A – Example of struct Definition

The following is part of the dcache.h file describing the dentry structure.

/*
 * linux/include/linux/dcache.h
 *
 * Dirent cache data structures
 *
 * (C) Copyright 1997 Thomas Schoebel-Theuer,
 * with heavy changes by Linus Torvalds
 */

struct dentry {
atomic_t d_count;
unsigned int d_flags; /* protected by d_lock */
spinlock_t d_lock; /* per dentry lock */
struct inode *d_inode; /* Where the name belongs to - NULL is

 * negative */
/*
 * The next three fields are touched by __d_lookup. Place them here
 * so they all fit in a cache line.
 */
struct hlist_node d_hash; /* lookup hash list */
struct dentry *d_parent; /* parent directory */
struct qstr d_name;

struct list_head d_lru; /* LRU list */
/*
 * d_child and d_rcu can share memory
 */
union {

struct list_head d_child; /* child of parent list */
struct rcu_head d_rcu;

} d_u;
struct list_head d_subdirs; /* our children */
struct list_head d_alias; /* inode alias list */
unsigned long d_time; /* used by d_revalidate */
struct dentry_operations *d_op;
struct super_block *d_sb; /* The root of the dentry tree */
void *d_fsdata; /* fs-specific data */

#ifdef CONFIG_PROFILING
struct dcookie_struct *d_cookie; /* cookie, if any */

#endif
int d_mounted;
unsigned char d_iname[DNAME_INLINE_LEN_MIN]; /* small names */

};

44

Appendix B – Data Abstraction

B.1 Identifying Fields of Interest

Superblock

Attribute Type Description Relevance Rationale
s_list struct list_head Double link to other

filesystems (superblocks)
Low We’ll only be using one file system

s_dev dev_t Device supporting filesystem Low We don’t care about the device
s_blocksize unsigned long Size of file system Low We can fix this in our model
s_blocksize_bit
s

unsigned char Size in bits of address space. Low We can fix this in our model

s_dirt unsigned char Superblock has changed
since last write

Medium May feature later when we look at
device

s_maxbytes unsigned long
long

Maximum File Size Low Not interested in large files

s_type struct
file_system_type
*

Type of FS (e.g. EXT2) Low Only interested in one file sys type

s_op struct
super_operations
*

Pointer to ops structure (e.g.
for EXT2)

Low Only interested in one set of ops,
characterised by our model

s_dq_op struct
duot_operations *

Disk quota ops Low Not interested in DQ

s_qcop struct
quotactl_ops *

Disk quota control ops Low Not interested in DQ

s_export_op struct
export_operations
*

Export ops Low NFS only

s_flags unsigned long E.g. read only FS E.g. other
inode flags

Low Some flags might be important to
correctness or fairness?
Flags restrict full behaviour so can
ignore (allow full functionality)

s_magic unsigned long Device ID number Low Not interested in device
s_root struct dentry * Dentry for root of FS High Important for correctness or

consistency
s_umount struct

rw_semaphore
Reader/Writer semaphore
(locks writes, permits reads)
for use in unmounting

High Will be important when modelling
mount/unmount behaviour

s_lock struct mutex Superblock lock. Mutex
structure. Modelling in
previous versions as no of
processes waiting and
waiting queue

High Correctness

s_count int Number of dentries referring
to superblock

Medium Consistency

s_syncing int Set during device
synchronisation (writing
changes)

Low Not modelling device
synchronisation yet.

s_need_synch_
fs

int Set when synchronisation
required (similar to dirt)

Low Not modelling device
synchronisation yet.

s_active atomic_t Device Active? Low Not modelling device yet.
s_security void * Used in device security? Low Not modelling device or security

properties
s_xattr struct

xattr_handler **
Concerning extended
permissions

Low Not modelling extended permissions

s_inodes struct list_head List of all Inodes Medium Ignore for now – can get to via Root
s_dirty struct list_head List of dirty inodes Medium Consistency. But not modelling

device synch yet.
s_io struct list_head “Parked for writeback” list Low Ignoring
s_anon struct hlist_head Anonymous Dentries list Low Used by NFS
s_files struct list_head List of open files Medium Not modelling file info initially –

may need abstract model of this
eventually

s_bdev struct
block_device *

Device (backup?) Low Ignoring

s_instances struct list_head List of file system
superblocks of same type

Low Ignoring

s_quota_info struct quota_info Quota data Low No modelling quotas

45

s_frozen int Error handling – filesystem
frozen

Low Not modelling device/device failures

s_wait_unfroze
n

wait_queue_head_
t

Error handling – processes
waiting for filesystem to be
unfrozen

Low Not modelling device/device failures

s_id char _[32] Name for information
purposes

Low Not important

s_fs_info void * Filesystem specific data Low For EXT2 this looks device specific
s_vfs_rename_
mutex

struct mutex Mutex used when renaming
directories.
Used by VFS.

Low Not used by EXT2

s_time_gran u32 Time granularity for
atime/ctime etc.

Low Not important to model. Hardwired.

Dentry

Attribute Type Description Relevance Rationale
d_count atomic_t Reference count - no of

processes accessing dentry
High Consistency and correctness

d_flags unsigned int Used by specific file sys
implementations

Low Never used by EXT2

d_lock spinlock_t Spinlock (used to protect
dentry)

High Correctness

d_inode struct inode * Pointer to Inode related to
this dentry

High Consistency/Correctness

d_hash struct hlist_node Links to other entries in hash
bucket

Low Not modelling dcache

d_parent struct dentry * Parent dentry or reflexive if
root

High Consistency

d_name struct qstr Name and hash value Low Use d_iname for name, simple
hash

d_lru struct list_head Used to link unreferenced
dentries (for mem
management) See Note.

Medium May cause problems. See note.

d_child struct list_head Used to link sibling Dentries
[union with d_rcu]

High Consistency

d_rcu struct rcu_head Queue of pending functions
to be carried out on inode
[union with d_child]

High Correctness (but may have to limit
queue size)

d_subdirs struct list_head Used to Link Child Dentries High Consistency
d_alias struct list_head Used to Link Dentries

pointing to same inode (hard
links)

Low Ignoring Hard links for now

d_time unsigned long Used by FS implementations Low Used for shared file systems,
therefore ignore for now

d_op struct
dentry_operations *

Pointer to operations on
Dentries

Low Captured by model

d_sb struct super_block * Pointer to superblock Low There will only be one initially
d_fsdata void * Used by FS implementations Low Not used by EXT2
d_cookie struct

dcookie_struct
Used in kernel analyses Low Not part of core implementation

d_mounted int Records whether Dentry
carries a mount.

Low Will only be mounting single file
system, therefore no need for this.

d_iname unsigned char _[16] First 16 chars of name High Here’s where we store our name.

Inode

Attribute Type Description Relevance Rationale
i_hash struct hlist_node Used to link inodes in this

hash bucket
Low No hashing needed on inodes

i_list struct list_head Links inodes in same state
(used, unused,dirty) for entire
FS

Medium May be able to generate on-the-
fly if important

i_sb_list struct list_head Used to link all Inodes (for
superblock)

Low Ignore (equivalents possible
without allocating dataspace)

i_dentry struct list_head List of dentries referring to
this inode

High Consistency

i_ino unsigned long Inode identifier Low Inode identified by its “address”
in pool

46

i_count atomic_t Number of processes Medium Consistency – but can ignore for
now (no links, single mount)

i_mode umode_t File mode e.g permissions Low Only using one type of file
i_nlink unsigned int Number of hard links Low Not modelling links yet
i_uid/ i_gid uid_t/gid_t User/group ids Low Unimportant
i_rdev dev_t Device Low Device (for mouse etc.)
i_size loff_t File size Low Not modelling this (yet).
i_atime,
i_mtime,
i_ctime

struct timespec Create, modify times etc. Low Unimportant.

i_blkbits unsigned int Blocksize (no of bits) Low Pertains to Device
i_blksize unsigned long Blocksize Low Pertains to Device
i_version unsigned long Used to track changes to

inode (along with dirty)
Medium Not modelling device yet

i_blocks blkcnt_t Filesize (blocks) Low Not modelling device yet
i_bytes unsigned short Filesize (bytes [in last

block?])
Low Not modelling device yet

i_lock spinlock_t Used to protect file size
fields?

High Correctness – but may be able to
avoid if only used on these fields

i_mutex struct mutex Used to protect inode
attributes

High Correctness

i_alloc_sem struct
rw_semaphore

Used to protect inode
attributes

High Correctness

i_op struct
inode_operations *

Inode operations Low In model

i_fop const struct
file_operations *

File operations Low In model

i_sb struct super_block * Pointer to superblock Low Only one superblock
i_flock struct file_lock * File lock – See note High Correctness
i_mapping struct

address_space *
Mapping of inode to VM Low VM – avoid

i_data struct
address_space

More to do with VM Low VM – avoid

i_dquot struct dquot * _ [X] Disk quota info Low Not interested
i_devices struct list_head List of devices Low Device Specific
i_pipe struct

pipe_inode_info *
Pipe info Low Device Specific

i_bdev struct block_device
*

Block device info Low Device Specific

i_cdev struct cdev * Device info Low Device Specific
i_cindex int Device info Low Device Specific
i_generation __u32 Used for security purposes Low Not interested in security
i_dnotify_mask unsigned long For directory notify Low Kernal option (trace/debug)
i_dnotify struct dnotify_struct

*
For directory notify Low Kernal option (trace/debug)

inotify_watches struct list_head Watches this inode Low Kernal option (trace debug?)
inotify_mutex struct mutex Used when watching inode Low Kernal option (trace debug?)
i_state unsigned long e.g. Dirty/locked/freeing High Correctness.
dirtied_when unsigned long Time stamp of first dirtying Low Not modelling dirtying yet.
i_flags unsigned int Type of inode (incl type of

locking)
Low Only modelling most liberal

type.

i_writecount atomic_t Write access count/deny
count (no of processes)

High Consistency (with processes)

i_security void * Used for security purposes Low Not interested in security
generic_ip void * Don’t know Low Not used in code
i_size_seqcount seqcount_t Kernal option Low Kernal option (trace?)

47

B.2. Information Modelling

Superblock

Attribute Description Relevance Bit
Estimates

Rationale

s_root Dentry for root of FS High 3 Based on max of 8 dentries
s_umount Reader/writer semaphore High 3 Provisionally modelled in

same way as mutex structure.
s_lock Superblock lock – Mutex

Structure
(count, spinlock, wait queue)

High 3 (1 bit lock, 1 bit
PID of process
holding lock, 1 bit
PID of waiting
process [if different
from holding
process])

Based on up to 1 waiting
process – doesn’t quite reflect
mutex structure, but hopefully
close enough. Assumes 2
processes.

Dentry

Attribute Description Relevance Bit
Estimates

Rationale

d_count Reference count (no of children) High 3 Allows for 6 processes
d_lock Spinlock (used to protect dentry) High 3 As for s_lock
d_inode Pointer to inode related to this

dentry
High 3 8 possible inodes

d_parent Parent dentry or reflexive if root High 3 7 possible parents (all dentries have
parents, roots parent is itself)

d_child List of siblings High 8 Based on “marking” of relevant
entries. Large model probably better
served with constrained DMA.

d_rcu Queue of pending functions to be
carried out on inode [union with
d_child]

High 4 This is a union with d_child (only
applies to root?). However, we budget
separately.
4 bits includes 1 bit to identify that an
operation is pending and 3 to identify
that operation. If more than 1 operation
needed it
will need to be a resource failure
(successful termination). This can be
reviewed in the light of further
modelling.

d_subdirs List of children High 8 Based on marking of relevant entries.
Large model probably better served
with constrained DMA.

d_iname First 16 chars of name High 3 We need up to 8 “names”

Inode

Attribute Description Relevance Bit
Estimates

Rationale

i_dentry List of dentries referring to this
node

High 3 There’s only going to be one (no
links)

i_lock Used to protect file size fields? High 3 As for superblock lock
i_mutex Used to protect inode attributes High 3 As for superblock mutex
i_alloc_sem Used to protect inode attributes High 3 Modelling as lock for now
i_flock File locks – see note High 9 3 bits per queue (list of processes

holding locks [0/1 length 2], list of
type of lock [0/1, length 2], list of
possible process blocks [0/1, length
2, 0 means no process blocked 1
means process not holding lock
blocked])

i_state e.g. Dirty/locked/freeing High 2 Assume states of interest can be
modelled in 2 bits

i_writecount Write access count/deny count
(no of processes with write
access)

High 3 Either –1, 0, 1 or 2 (assuming max
two
processes)

48

Appendix C - Pseudocode

C.1 Miscellaneous Supporting Functions

/*
 * $Author: muehlber $: $RCSfile: pseudo_misc.c,v $
 * $Revision: 1.16 $, $Date: 2007/08/14 16:26:35 $
 */

/* Defines: */

#define NULL (void *) 0

#define DIRTY 1
#define DELETING 2
#define TRUE 1
#define FALSE 0

#define ERROR 0
#define SUCCESS 1

/* Types: */
typedef char * string; /* just in order to remove pointers */

typedef int spinlock_t;

typedef int atomic_t;

typedef int mutex_t;

typedef struct inode_t
 {
 int is_allocated;
 atomic_t i_count;
 spinlock_t i_lock;
 int i_state;
 mutex_t i_mutex;
 } inode_t;

inode_t iNULL = {0, 0, 0, 0};

typedef struct dentry_t
 {
 int id; /* in order to avoid random bit shifting operations
 * in the pseudocode I assume dentries to be numbered
 * by 2^n with n being the decimal number of the entry. */
 int is_allocated;
 void *d_parent;
 atomic_t d_count;
 spinlock_t d_lock;
 int d_child;
 int d_subdirs;
 inode_t *d_inode;
 string d_iname;
 } dentry_t;

dentry_t dNULL = {0, 0, NULL, 0, 0, 0, 0, NULL, NULL};

typedef struct lookup_res_t /* just in order to remove pointers */
 {
 dentry_t * parent;
 dentry_t * file;
 } lookup_res_t;

lookup_res_t lNULL = {&dNULL, &dNULL};

49

/* Function defs: */
#include "pseudo.h"

/* Hacks: */
static dentry_t *root = NULL; /* this is a pointer to the root directory;
 * should be part of the superblock */
static dentry_t *current = NULL; /* we assume that we have a global pointer to
 * the current directory of each process */

/* Global locks: */
spinlock_t inode_lock;
spinlock_t dcache_lock;

/* General comments:
 * - Most of the functions defined here use local variables such as
 * counters or temporary dentries. Of course this is not thread-save.
 * A model implementing the functions should either inline them
 * or use some additional locking around each function in order to
 * serialise their execution.
 * - This pseudocode models a mixture between a synchronous and an
 * asynchronous filesystem. Especially the way how we wait until
 * nobody else uses a particular dentry or inode we want to delete,
 * is significantly different from the Linux kernel's operation.
 * The reason for this is that I didn't want to introduce a scheduler,
 * software interrupts and additional process lists.
 * - There will be a new version of these code snippets containing
 * cross-references to the kernel's code.
 * - The whole pseudocode is about 10 pages long now. Since I have
 * no means of compiling or testing it I would not expect it to be
 * free of errors :-)
 */

/* Functions not defined explicitly:
 * - find_dentry() -- a model specific function that returns a dentry
 * for a given parent and a filename */
extern dentry_t find_dentry (dentry_t, string);

/* - sleep() -- waits for some time. */
extern void sleep (void);

/* - foreach(array) -- do something with every element of array */
extern void foreach (string);
/* - cont() -- is the continue-statement to be used in the foreach-loop. */
extern void cont (void);

/* - spin_lock(), spin_unlock() -- spinlock operations */
extern void spin_lock (spinlock_t);
extern void spin_unlock (spinlock_t);

/* - first_component(), next_component(), last_component() are
 * functions "exploding" path strings into it's components separated
 * by /. If / is the first component of a path, it refers to the
 * root directory. All other /es handled as delimiters. */
extern string first_component (string);
extern string next_component (string);
extern string last_component (string);
extern string concat (string, string);

/* - atomic_read() and atomic_write() read and write atomic integer
 * variables. */
extern int atomic_read (atomic_t);
extern void atomic_write (atomic_t, int);

50

extern void atomic_inc (atomic_t);
extern void atomic_dec (atomic_t);

/* - up() and down() set and anset mutexes; we can probably skip those. */
extern void up (mutex_t);
extern void down (mutex_t);

/* - allocate_inode(dentry) returns a new inode; i_count is set to 1,
 * i_dentry points to dentry, all locks are released, state is dirty. */
extern inode_t allocate_inode (dentry_t);

/* - allocate_dentry(filename, parent) returns a new dentry; d_iname is
 * set to filename, d_parent is set to parent, all locks are released,
 * all lists are empty, d_count is 1. */
extern dentry_t allocate_dentry (string, dentry_t);

/* - deallocate_dentry() and deallocate_inode() set every data field
 * in a given dentry or inode to 0. */
extern void deallocate_dentry (dentry_t);
extern void deallocate_inode (inode_t);

/* Initialisation */

int init_fs (void)
{

 dentry_t my_root;
 inode_t itmp;

 spin_lock (dcache_lock);
 spin_lock (inode_lock);

 /* get dentry for / */
 my_root = allocate_dentry ("/", dNULL);
 if (!my_root.is_allocated) { goto FIN; }

 /* get inode for / */
 itmp = allocate_inode (my_root);
 if (!itmp.is_allocated) { goto FIN; }
 my_root.d_inode = &itmp; /* set inode */
 my_root.d_parent = &my_root; /* root is its own parent */
 my_root.d_subdirs = my_root.id; /* root is its own subdir */
 my_root.d_child = my_root.id; /* root is its own sibling */

 /* set up "superblock" */
 root = &my_root;

FIN:
 spin_unlock (inode_lock);
 spin_unlock (dcache_lock);

/* /lost+found is optional */
#ifdef __HAVE_LOSTANDFOUND
 if (root && sys_mkdir ("/lost+found") == SUCCESS)
#else
 if (root)
#endif
 { return (SUCCESS); }
 else
 { return (ERROR); }
 }

/* Cleanup process: */

void cleanup (void)
 {

51

 inode_t inode;
 dentry_t dentry;

 while (1) /* This should only be an endless loop if it's actually
 * running as a separate process. Otherwise it must
 * terminate in order to avoid deadlock situations. */
 {
 spin_lock (dcache_lock);
 foreach ("dentry in /list of dentries/");
 {
 if (! atomic_read(dentry.d_count))
 { deallocate_dentry (dentry); }
 }
 spin_unlock (dcache_lock);

 spin_lock (inode_lock);
 foreach ("inode in /list of inodes/");
 {
 if (! atomic_read(inode.i_count))
 { deallocate_inode (inode); }
 if (inode.i_state == DIRTY) /* sync operation */
 {
 spin_lock (inode.i_lock);
 inode.i_state = 0;
 spin_unlock (inode.i_lock);
 }
 }
 spin_unlock (inode_lock);

 sleep();
 }

 return;
}

/* Helper functions: */

/* is a given dentry a directory? */
int is_directory (dentry_t dentry)
 {
 if (dentry.is_allocated && dentry.d_subdirs != 0)
 { return (TRUE); }

 return (FALSE);
 }

/* increment d_count */
void dget (dentry_t dentry)
 {
 if (dentry.is_allocated)
 {
 spin_lock (dentry.d_lock);
 if (atomic_read (dentry.d_count))
 { atomic_inc(dentry.d_count); }
 spin_unlock (dentry.d_lock);
 }

 return;
 }

/* decrement d_count */
void dput (dentry_t dentry)
 {
 if (dentry.is_allocated)
 {
 spin_lock (dentry.d_lock);

52

 if (atomic_read (dentry.d_count) > 1)
 { atomic_dec (dentry.d_count); }
 spin_unlock (dentry.d_lock);
 }

 return;
 }

/* returns dentry for parent/path if it exists, NULL otherwise */
dentry_t get_dentry (string path, dentry_t parent)
 {
 dentry_t dtmp;

 spin_lock (dcache_lock);
 dtmp = find_dentry (parent, path); /* model specific function */
 if (dtmp.is_allocated)
 {
 dget (dtmp); /* mark entry as "in use" */
 if (!atomic_read (dtmp.d_count)) /* did it work? */
 { dtmp = dNULL; } /* error */
 }
 spin_unlock (dcache_lock);

 return (dtmp);
 }

/* THIS IS THE NEW VERSION OF get_dentry() AS DISCUSSED WITH ANDY
 * VIA MAIL. */
/* returns dentry for parent/path if it exists, NULL otherwise */
dentry_t get_dentry_NEW (string path, dentry_t parent)
{
 dentry_t dent;

 spin_lock (dcache_lock);

foreach ("dent in /list of dentries/");
 {
 if (!dent.is_allocated) { cont(); } /* dent is not allocated */
 if (((dentry_t *)dent.d_parent)->id == parent.id && /* correct path and */
 dent.d_iname == path) /* correct filename? */
 {
 dget (dent); /* mark entry as "in use" */
 if (!atomic_read (dent.d_count)) /* did it work? */
 { cont(); } /* no. check next entry. */
 else
 { spin_unlock (dcache_lock);
 return (dent); } /* yes! return entry. */
 }
 }
 spin_unlock (dcache_lock); /* no matching entry found. */

 return (dNULL);
}

/* path traversal, returns parent's and child's dentries */
lookup_res_t path_lookup (string path)
 {
 lookup_res_t result;
 dentry_t parent = dNULL, dtmp;
 string tmp;

 if (path[0] != '/') /* if path does not start with / */
 {
 if (current != NULL)
 { parent = *current; } /* get current working dir */
 else
 { return (lNULL); } /* error */

53

 }

 tmp = first_component (path); /* this will return "/" */
 while (tmp)
 {
 /* get dentry for current path component */
 dtmp = get_dentry (tmp, parent);

 if (!dtmp.is_allocated) /* --------------- current path does not exist */
 {
 if (!parent.is_allocated)
 { return (lNULL); } /* error */
 if (tmp != last_component (path))
 { dput (parent); return (lNULL); } /* error */
 else
 { result.parent = &parent; result.file = &dNULL;
 return (result); }
 }

 /* ------------------------ current path does exist */
 if (tmp != last_component (path))
 {
 if (is_directory (dtmp))
 { /* continue path traversal */
 dput (parent); /* ! this line may be erroneous */
 parent = dtmp;
 tmp = next_component (path);
 }
 else
 { /* further traversal not possible because one middle
 * component is regular file */
 dput (parent);
 dput (dtmp);
 return (lNULL); /* error */
 }
 }
 else
 { /* this is the last component; we are done. */
 tmp = NULL;
 }
 } /* while (tmp) */

 result.parent = &parent; result.file = &dtmp;
 return (result);
 }

/* release usage counters for an open file */
void path_release (dentry_t dentry)
 {
 if (dentry.is_allocated)
 {
 dput (*((dentry_t *)(dentry.d_parent)));
 dput (dentry);
 }

 return;
 }

/* update sibling list for each child of parent;
* update parent.d_subdirs */

void update_parent (dentry_t parent)
{

 dentry_t dent;
 int siblings = 0, subdirs = 0;

 if (!parent.is_allocated) { return; }
 if (!is_directory(parent)) { return; }

54

 /* find subdirs and siblings */
 foreach ("dent in /list of dentries/");
 {
 if (dent.id != root->id && /* exclude root, in the models this should
 * become something like (dent.id != 0) */
 ((dentry_t *) dent.d_parent)->id == parent.id &&
 atomic_read(dent.d_count))
 { siblings |= dent.id; /* refers to dent's ID */
 if (is_directory(dent))
 { subdirs |= dent.id; }
 }
 }

 /* update siblings */
 foreach ("dent in /list of dentries/");
 {
 if (dent.id != root->id && /* exclude root, in the models this should
 * become something like (dent.id != 0) */
 ((dentry_t *) dent.d_parent)->id == parent.id &&
 atomic_read(dent.d_count))
 { dent.d_child = siblings; }
 }

 /* update subdirs; make sure that / is a subdir of / */
 parent.d_subdirs = subdirs | parent.id;

 return;
 }

C.2 Creating a file

/*
 * $Author: muehlber $: $RCSfile: pseudo_creat.c,v $
 * $Revision: 1.11 $, $Date: 2007/11/09 17:51:15 $
 */

/* sys_creat is actually a specific behaviour of sys_open() */
int sys_creat (string path)
{

 lookup_res_t l;
 inode_t itmp;
 dentry_t parent, file;

 l = path_lookup (path);
 parent = *l.parent;
 file = *l.file;

 if (!parent.is_allocated)
 {
 if (file.is_allocated) /* deals with root look up */
 { dput(file); }
 return (ERROR);
 }

 down (parent.d_inode->i_mutex);

 if (file.is_allocated && !is_directory (file))
 { up (parent.d_inode->i_mutex);
 path_release (file);
 return (SUCCESS); }
 if (file.is_allocated && is_directory (file))
 { up (parent.d_inode->i_mutex);
 path_release (file);
 return (ERROR); }

55

 spin_lock (dcache_lock);

 file = allocate_dentry(last_component(path), parent);
 if (!file.is_allocated)
 { spin_unlock (dcache_lock);
 up (parent.d_inode->i_mutex);
 dput (parent);
 return (ERROR); }
 dget (file);

 spin_lock (inode_lock);
 itmp = allocate_inode(file);
 file.d_inode = &itmp;
 spin_unlock (inode_lock);
 if (!file.d_inode->is_allocated)
 { atomic_write (file.d_count, 0);
 dput (parent);
 spin_unlock (dcache_lock);
 up (parent.d_inode->i_mutex);
 return (ERROR); }

 update_parent (*((dentry_t *)file.d_parent));
 path_release (file);
 spin_unlock (dcache_lock);

 up (parent.d_inode->i_mutex);

 return (SUCCESS);
 }

C.3 Deleting a File

/*
 * $Author: muehlber $: $RCSfile: pseudo_unlink.c,v $
 * $Revision: 1.9 $, $Date: 2007/06/27 13:34:02 $
 */

int sys_unlink (string path)
 {
 lookup_res_t l;
 dentry_t parent, file;

 l = path_lookup (path);
 parent = *l.parent;
 file = *l.file;

 if (!file.is_allocated || is_directory (file))
 { dput (file); dput (parent); return (ERROR); }

 down (file.d_inode->i_mutex); /* to be cleared at the point of
 * re-allocation! */

 spin_lock (dcache_lock); /* d_delete () */

 while (atomic_read(file.d_count) != 0) /* dentry_iput */
 {
 spin_lock (file.d_lock);
 if (atomic_read(file.d_count) == 2)
 { atomic_write(file.d_count, 0); }
 spin_unlock (file.d_lock);
 }

 /* there may be a bug in this line; I'm not sure when exactly
 * i_count is decremented or incremented. */

56

 spin_lock (inode_lock);
 while (atomic_read(file.d_inode->i_count) != 0) /* iput () */
 {
 spin_lock (file.d_inode->i_lock);
 if (atomic_read(file.d_inode->i_count) == 1)
 { atomic_write (file.d_inode->i_count, 0); }
 spin_unlock (file.d_inode->i_lock);
 }
 spin_unlock (inode_lock);

 update_parent (*((dentry_t *)file.d_parent));
 dput (parent);
 spin_unlock (dcache_lock);

 return (SUCCESS);
 }

C.4 Creating a Directory

/*
 * $Author: muehlber $: $RCSfile: pseudo_mkdir.c,v $
 * $Revision: 1.10 $, $Date: 2007/08/13 17:22:05 $
 */

int sys_mkdir (string path)
{

 lookup_res_t l;
 inode_t itmp;
 dentry_t parent, dir;

 l = path_lookup(path);
 parent = *l.parent;
 dir = *l.file;

 if (dir.is_allocated)
 { path_release (dir); return (ERROR); }
 if (!parent.is_allocated)
 {
 if (dir.is_allocated) /* deals with root look up */
 { dput(dir); }
 return (ERROR);
 }

 spin_lock (dcache_lock);
 dir = allocate_dentry(last_component(path), parent);
 if (!dir.is_allocated)
 { spin_unlock (dcache_lock);
 dput(parent);
 return (ERROR); }

 dget(dir);

 spin_lock (inode_lock);
 itmp = allocate_inode(dir);
 dir.d_inode = &itmp;
 if (dir.d_inode->is_allocated) { down(dir.d_inode->i_mutex); }
 spin_unlock (inode_lock);

 if (!dir.d_inode->is_allocated)
 { atomic_write (dir.d_count, 0);
 dput (parent);
 spin_unlock (dcache_lock);
 return (ERROR); }

 dir.d_subdirs = dir.id;

57

 update_parent (*((dentry_t *)dir.d_parent));
 path_release (dir);
 spin_unlock (dcache_lock);

 up(dir.d_inode->i_mutex);

 return (SUCCESS);
 }

C.5 Removing a Directory

/*
 * $Author: muehlber $: $RCSfile: pseudo_rmdir.c,v $
 * $Revision: 1.14 $, $Date: 2007/08/13 17:22:05 $
 */

int sys_rmdir (string path)
{

 lookup_res_t l;
 dentry_t parent, dir, tmp;
 int children = 0;

 l = path_lookup (path);
 parent = *l.parent;
 dir = *l.file;

 /* 1. -- sanity checks */
 if (!dir.is_allocated || !is_directory(dir) || !parent.is_allocated)
 { dput (dir); dput (parent); return (ERROR); }

 /* 2. -- lock the node */
 down (dir.d_inode->i_mutex);
 spin_lock (dcache_lock); /* d_delete () */

 /* 3. -- check for subdirectories
 * (needs i_mutex and dcache_lock in order to avoid others changing
 * the state) */
 foreach ("tmp in /list of dentries/");
 {
 if (((dentry_t *)(tmp.d_parent))->id == dir.id &&
 atomic_read (tmp.d_count))
 { children++; }
 }

 if (children != 0)
 {
 spin_unlock (dcache_lock);
 up (dir.d_inode->i_mutex);
 dput (dir); dput (parent); /* no path_release because another process could
 * have already destroyed the parent relation */
 return (ERROR);
 }

 /* 4. -- mark the node for deletion
 * (uses d_inode->i_mutex and d_inode->i_state) */
 if (dir.d_inode->i_state & DELETING)
 { /* somebody else is already deleting this node -- success */
 dput (dir); dput (parent); /* no path_release because another process
 * has already destroyed the parent relation */
 up (dir.d_inode->i_mutex);
 return (SUCCESS);
 }
 else
 { /* we are going to delete this node */
 dir.d_inode->i_state |= DELETING;

58

 up (dir.d_inode->i_mutex);
 }

 /* ==> dir.d_inode->i_mutex is free now */

 /* 5. -- now remove links to this node so that later path_lookup()s won't
 * return it and we don't get any new processes working on this node */
 dir.d_parent = &dNULL;
 update_parent (parent); /* This can result in clients unsing invalid
 * working directories. This is okay. */
 dput (parent);
 spin_unlock (dcache_lock);

 /* ==> dcache_lock is free now */
 /* ==> other processes may continue working on this directory here */

 /* 6. -- set dir.d_count to 0 */
 while (atomic_read(dir.d_count) != 0) /* dentry_iput */
 {
 spin_lock (dcache_lock);
 spin_lock (dir.d_lock);
 if (atomic_read(dir.d_count) == 2)
 { atomic_write(dir.d_count, 0); }
 spin_unlock (dir.d_lock);
 spin_unlock (dcache_lock);
 }

 /* 7. -- set dir.d_inode->i_count to 0 */
 /* ! there may be a bug in this line; I'm not sure when exactly
 * i_count is decremented or incremented. */
 spin_lock (inode_lock);
 while (atomic_read(dir.d_inode->i_count) != 1) /* iput () */
 {
 spin_lock (dir.d_inode->i_lock);
 if (atomic_read(dir.d_inode->i_count) == 1)
 { atomic_write (dir.d_inode->i_count, 0); }
 spin_unlock (dir.d_inode->i_lock);
 }
 spin_unlock (inode_lock);

 return (SUCCESS);
 }

C.6 Renaming a File or Directory

/*
 * $Author: muehlber $: $RCSfile: pseudo_rename.c,v $
 * $Revision: 1.9 $, $Date: 2007/08/03 13:43:06 $
 */

int sys_rename (string src, string dst)
 {
 lookup_res_t l;
 dentry_t src_parent, src_file;
 dentry_t dst_parent = dNULL, dst_file = dNULL;

 l = path_lookup (src);
 src_parent = *l.parent;
 src_file = *l.file;

 if (!src_file.is_allocated)
 { goto MVERROR; }

 l = path_lookup (dst);

59

 dst_parent = *l.parent;
 dst_file = *l.file;
 if (!dst_parent.is_allocated || src_file.id == dst_file.id)
 { goto MVERROR; }

 if (is_directory(dst_file)) /* target is directory; move file into it */
 { dput (dst_parent);
 dst_parent = dst_file;
 dst_file = get_dentry(last_component(src), dst_parent);
 /* the implementation uses a temporary dentry; but since we
 * probably don't care about filenames at all, I use a string
 * operation. */
 dst = concat (dst, last_component(src)); }

 if (is_directory(dst_file))
 { goto MVERROR; } /* EFAULT */

 if (!is_directory(dst_file) && is_directory(src_file))
 { goto MVERROR; } /* EFAULT */

 if (is_directory(src_file) && atomic_read(src_file.d_count > 2))
 { goto MVERROR; } /* EBUSY */

 /* the implementation follows dst_file.d_parent.d_parent... and
 * checks whether there is a parent that equals src_file */
 if ("the new pathname contained a path prefix of the old")
 { goto MVERROR; } /* EINVAL; */

 down (dst_parent.d_inode->i_mutex);

 spin_lock (dcache_lock);

 if (dst_file.is_allocated) /* remove dst_file */
 {
 while (atomic_read(dst_file.d_count) != 0) /* dentry_iput */
 {
 spin_lock (dst_file.d_lock);
 if (atomic_read(dst_file.d_count) == 2)
 { atomic_write(dst_file.d_count, 0); }
 spin_unlock (dst_file.d_lock);
 }

 /* there may be a bug in this line; I'm not sure when exactly
 * i_count is decremented or incremented. */
 spin_lock (inode_lock);
 while (atomic_read(dst_file.d_inode->i_count) != 0) /* iput () */
 {
 spin_lock (dst_file.d_inode->i_lock);
 if (atomic_read(dst_file.d_inode->i_count) == 1)
 { atomic_write (dst_file.d_inode->i_count, 0); }
 spin_unlock (dst_file.d_inode->i_lock);
 }
 spin_unlock (inode_lock);

 update_parent (*((dentry_t *)dst_file.d_parent));
 dst_file = dNULL; /* we are done with it */
 }

 /* rename */
 src_file.d_parent = &dst_parent;
 src_file.d_iname = last_component (dst);
 update_parent (src_parent);
 update_parent (dst_parent);
 dput (dst_parent);
 dput (src_parent);
 dput (src_file);

60

 spin_unlock (dcache_lock);

 up (dst_parent.d_inode->i_mutex);

 return (SUCCESS);

MVERROR:
 dput (dst_file); dput (dst_parent);
 dput (src_file); dput (src_parent);
 return (ERROR);
 }

61

Appendix D – Examples from the SPIN Model

D.1 Data Structures in Promela

typedef dentry {
unsigned d_count : 3;
lock d_lock;
unsigned d_inode : 3;
unsigned d_parent : 3;
bit d_child [8];
rcu d_rcu;
bit d_subdirs [8];
unsigned d_iname : 3

};

typedef inode {
unsigned i_dentry : 3;
lock i_lock;
lock i_mutex;
lock i_alloc_sem;
filelock i_flock;

unsigned i_state : 2;
unsigned i_writecount : 3

};

typedef dentrypool {
dentry dentries [NoofNodes];
bit available [8]

};

typedef inodepool {
inode inodes [NoofNodes];
bit available [8]

};

D.2. Allocating and Deallocating Nodes

inline alloc_dentry (dep,returnval, localvar,error) {
d_step{

localvar=0;
do
:: localvar==NoofNodes -> break
:: else {

if
:: dep.available[localvar] != 0 -> localvar++
:: else {

dep.available[localvar]=1;
returnval=localvar;
break

}
fi

}
od;
if
:: localvar==NoofNodes -> error=1
:: else error=0
fi

} /*dstep */
if
:: error==1 ->

goto end
:: else
fi

};

inline dealloc_dentry(dep,dent) {
d_step{

assert (dent>=0 && dent<=NoofNodes-1 && dep.available[dent]==1);
dep.available[dent]=0

} /*dstep*/
};

62

D.3 Other core functions

inline allocate_dentry(dent,name,parent,lvplus1_4h,lvplus1_1)
{

alloc_dentry(dpool,dent,lvplus1_4h,lvplus1_1);
/* init dentry defaults + parent + filename*/
dpool.dentries[dent].d_count=1; /* Not marked for deletion */
dpool.dentries[dent].d_lock.islocked=0;
dpool.dentries[dent].d_lock.lockedby=0;
dpool.dentries[dent].d_lock.waiting=0;
dpool.dentries[dent].d_inode=0; /* initially 0 */
dpool.dentries[dent].d_parent=parent; /* parent of root is root */
dpool.dentries[dent].d_child[0]=0;
dpool.dentries[dent].d_child[1]=0;
dpool.dentries[dent].d_child[2]=0;
dpool.dentries[dent].d_child[3]=0;
dpool.dentries[dent].d_child[4]=0;
dpool.dentries[dent].d_child[5]=0;
dpool.dentries[dent].d_child[6]=0;
dpool.dentries[dent].d_child[7]=0; /* No siblings */
/* Not bothering to set rcu for now */
dpool.dentries[dent].d_subdirs[0]=0;
dpool.dentries[dent].d_subdirs[1]=0;
dpool.dentries[dent].d_subdirs[2]=0;
dpool.dentries[dent].d_subdirs[3]=0;
dpool.dentries[dent].d_subdirs[4]=0;
dpool.dentries[dent].d_subdirs[5]=0;
dpool.dentries[dent].d_subdirs[6]=0;
dpool.dentries[dent].d_subdirs[7]=0; /* No children (dirs) */
dpool.dentries[dent].d_iname=name

}

inline modelfinddentry(name,parent,returndent,count)
{

/* Assume dcache locked when called */
assert(dcache_lock.islocked==1);
if
:: parent==NoofNodes -> { /*Parent Null*/

assert(name==0); /* We should be looking for root */
returndent=super.s_root /* And here's the root dentry */

}
:: else {

/* This is the equivalent of the dcache operation to find the right name */
/* Since speed is not important for model, will search dpool rather than use subdirs */
count=0;
do
:: count<NoofNodes -> {

if
:: dpool.available[count]==1 && dpool.dentries[count].d_parent==parent &&

dpool.dentries[count].d_iname==name &&
dpool.dentries[count].d_count!=0 -> { /* in use */

returndent=count;
break

}
:: else count++
fi

}
:: count==NoofNodes -> {

returndent=NoofNodes;
break

}
od

}
fi

}

63

D.4. Supporting Functions

inline get_dentry(name,parent,returndent,mfdlv_4_1) {
spinlock_lock(dcache_lock);
modelfinddentry(name,parent,returndent,mfdlv_4_1); /* specific find function */
if
:: returndent!=NoofNodes -> { /* Found name */

dget(returndent);
assert(dpool.dentries[returndent].d_count != 0) /* replaces check for success in

pseudocode */
}
:: else
fi;
spinlock_unlock(dcache_lock)

}

inline update_parent(dent,siblingslv,subdirslv,isdirectory_flag,count,count2)
{

assert(dent!=NoofNodes);
printf("Update parent called with dent = %u\n",dent);
is_directory(dent,isdirectory_flag);
assert(isdirectory_flag==1);

count=0;
do /* init siblings and subdirs */
:: count<NoofNodes -> {

siblingslv[count]=0;
subdirslv[count]=0;
count++;

}
:: count==NoofNodes -> break
od;

count=1; /* Don't take root into account */
do /* calc subdirs and siblings */
:: count<NoofNodes -> {

if
:: dpool.available[count]==1 && dpool.dentries[count].d_count!=0 /* in use */

&& dpool.dentries[count].d_parent==dent -> { /* and parent is right one */
siblingslv[count]=1; /* mark as sibling */
is_directory(count,isdirectory_flag);
if
:: isdirectory_flag -> subdirslv[count]=1; /* mark as subdir */
:: else
fi;
count++

}
:: else count++
fi;

}
:: count==NoofNodes -> break
od;
subdirslv[dent]=1; /* dent is subdir of itself */

count=1; /* Don't update root's siblings */
do /* update siblings */
:: count<NoofNodes -> {

if
:: dpool.available[count]==1 && dpool.dentries[count].d_count!=0 /* in use */

&& dpool.dentries[count].d_parent==dent -> { /* and parent is right one */
count2=0;
do /* write sibling array */
:: count2<NoofNodes -> {

dpool.dentries[count].d_child[count2]=siblingslv[count2];
count2++

}

64

:: count2==NoofNodes -> break
od

}
:: else
fi;
count++;

}
:: count==NoofNodes -> break
od;

count2=0;
do /* write subdirs array */
:: count2<NoofNodes -> {

dpool.dentries[dent].d_subdirs[count2]=subdirslv[count2];
count2++

}
:: count2==NoofNodes -> break
od

}

inline path_lookup(patharray,cwd,parent,child,tmp,dtmp,pathindex,isdirectory_flag,mfdlv_4_1) {
parent=NoofNodes; /* Null */
if
:: patharray[0]!=0 -> prepend(patharray,cwd)
:: else
fi;
assert(patharray[0]==0); /*starts with root */
tmp=0; /* first name is root */
pathindex=0; /* current position in path */
do
:: tmp != NoofNodes -> { /* Not reached end of path (NoofNodes=NULL) */

printf("tmp=%u, pathindex=%u\n",tmp,pathindex);
get_dentry(tmp,parent,dtmp,mfdlv_4_1);
printf("dtmp fetched as %u\n",dtmp);
if
:: dtmp==NoofNodes -> { /* current path extension doesn't exist */

if
:: parent==NoofNodes -> {/* Never even found root */

child=NoofNodes;
break

}
:: else { /* Found root but got stuck later */

if
:: patharray[pathindex+1]!=NoofNodes -> { /* Got stuck before last

component */
dput(parent);
parent=NoofNodes;
child=NoofNodes;
break

}
:: else { /* It was the last component in the path */

child=NoofNodes;
printf("Last component in Path!!\n");
break

}
fi

}
fi

}
:: else { /* Current path extension does exist */

if
:: patharray[pathindex+1]!=NoofNodes -> { /* Not last element in path */

is_directory(dtmp,isdirectory_flag);
if
:: isdirectory_flag -> {

if
:: parent!=NoofNodes -> dput(parent)

65

/* First time through parent = NULL, no dget on parent, so
no dput */

:: else
fi;
parent=dtmp;
pathindex++;
tmp=patharray[pathindex]

}
:: else { /* can't go any further */

if
:: parent!=NoofNodes -> dput(parent)
/* First time through parent = NULL, no dget on parent, so

no dput */
:: else
fi;
dput(dtmp);
parent=NoofNodes;
child=NoofNodes;
break;

}
fi

}
:: else { /* Is last element */

pathindex++;
tmp=patharray[pathindex]

}
fi

}
fi

}
:: tmp == NoofNodes -> {

child = dtmp;
break /* parent and child set correctly */

}
od

}

D.5 Creating a file

inline
sys_creat(patharray,cwd,error,parent,file,isdirectory_flag,filename,plulv_4_1,plulv_4_2,plulv_4_3,plulv_1
_1,

up_lv1,up_lv2,mfdlv_4_1){
error=0;
path_lookup(patharray,cwd,parent,file,plulv_4_1,plulv_4_2,plulv_4_3,plulv_1_1,mfdlv_4_1);
if
:: parent!=NoofNodes -> { /* if parent exists */

down(ipool.inodes[dpool.dentries[parent].d_inode].i_mutex);
if
:: file!=NoofNodes -> is_directory(file,isdirectory_flag) /* Only check dir if file exists */
:: else
fi;
if
:: file != NoofNodes && ! isdirectory_flag -> { /* File exists and isn't directory */

up(ipool.inodes[dpool.dentries[parent].d_inode].i_mutex);
path_release(file)

}
:: file != NoofNodes && isdirectory_flag -> { /* File exists but is directory */

up(ipool.inodes[dpool.dentries[parent].d_inode].i_mutex);
path_release(file);
error=1

}
:: file == NoofNodes -> { /* File doesn't exist */

spinlock_lock(dcache_lock);
last_component(patharray,filename); /* Get filename */

66

allocate_dentry(file,filename,parent,plulv_4_1,plulv_1_1); /* borrow the PLU
locals! */

assert(file!=NoofNodes && file!=0); /* replaces if structure - file not null or
root */

/* This check is redundant - root will never be reallocated
 and allocate_dentry will terminate rather than return null

*/
dget(file);
spinlock_lock(inode_lock);
allocate_inode(dpool.dentries[file].d_inode,file,plulv_4_1,plulv_1_1);

/* Borrowing pathlookup lvs again! */
spinlock_unlock(inode_lock);
assert(dpool.dentries[file].d_inode!=NoofNodes &&

dpool.dentries[file].d_inode!=0); /* replaces if structure */
/* This check is redundant - root will never be reallocated
 and allocate_dentry will terminate rather than return null

*/
update_parent(dpool.dentries[file].d_parent,up_lv1,up_lv2,plulv_1_1,

plulv_4_1,plulv_4_2); /* Borrow the plu lvs */
printf("Updated Parent!! \n");
path_release(file);
spinlock_unlock(dcache_lock);
up(ipool.inodes[dpool.dentries[parent].d_inode].i_mutex);

}
fi

}
:: else { /* Either child and parent don't exist, or child is root (from path_lookup(root)) */

error=1;
if
:: file!=NoofNodes -> {

assert(file==0); /* can only happen for root */
dput(file)

}
:: else
fi

}
fi

}

D.6 The Test Harness body

active proctype test () {

unsigned node : 3;
bit onebitlv;
bit flag,errorflag;

byte srcpath [PathLength];
byte dstpath [PathLength];
byte tmppath [PathLength];
byte cwd[PathLength];
unsigned fourbitlv3 : 4, fourbitlv4: 4, fourbitlv5:4, fourbitlv6:4;
unsigned fourbitlv7:4,fourbitlv8 : 4, fourbitlv9:4, fourbitlv10:4;
unsigned threebitlv : 3;
bit bitlv,bitlv2;
bit bitarraylv_1 [NoofNodes];
bit bitarraylv_2 [NoofNodes];

/* Initialise Superblock */
init_superblock(dpool,ipool,super,node,fourbitlv,onebitlv);

cd(dstpath,0); /* dstpath=root */
cd(srcpath,0); /* srcpath=root */
cd(cwd,0);/* Set cwd to root - cwd never used by harness, all calls by abs path, this is just for

call i/f */

67

do
:: {

printf("Choosing Id (1-NoofNodes-1)\n");
choose_id(node); /* Set srcpath */
printf("Choosing src cd (0:root,1:down,2:up,3:skip)\n");
printf("Current src path=");
print_path(srcpath);

#if !defined(myverif)
STDIN?c;

#endif
if

#if !defined(myverif)
:: c==48 -> cd(srcpath,0) /* root */

#endif
::

#if !defined(myverif)
c==49 ->

#endif
cd(srcpath,node) /* down to id */

::
#if !defined(myverif)

c==50 ->
#endif

cd(srcpath,NoofNodes) /* .. */
::

#if !defined(myverif)
c==51 ->

#endif
skip

fi;
#if !defined(myverif)

STDIN?c; /* carriage return */
#endif

printf("Choosing Id (1-NoofNodes-1)\n");
choose_id(node); /* Set dstpath */
printf("Choosing dst cd (0:root,1:down,2:up,3:skip)\n");
printf("Current dst path=");
print_path(dstpath);

#if !defined(myverif)
STDIN?c;

#endif
if

#if !defined(myverif)
:: c==48 -> cd(dstpath,0)

#endif
::

#if !defined(myverif)
c==49 ->

#endif
cd(dstpath,node)

::
#if !defined(myverif)

c==50 ->
#endif

cd(dstpath,NoofNodes)
::

#if !defined(myverif)
c==51 ->

#endif
skip

fi;
#if !defined(myverif)

STDIN?c; /* carriage return */
#endif

68

printf("Choosing model functions
(0:mkdir,1:creat,2:rename,3:unlink,4:rmdir,5:skip)\n");
#if !defined(myverif)

STDIN?c;
#endif

if /* Possibly call one of the Model functions */
::

#if !defined(myverif)
c==48 ->

#endif
{

sys_mkdir(srcpath,cwd,errorflag,fourbitlv3,fourbitlv4,bitlv,threebitlv,

fourbitlv5,fourbitlv6,fourbitlv7,bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);
printf("Called Mkdir. Error=%u. Path=",errorflag);
print_path(srcpath)

}
::

#if !defined(myverif)
c==49 ->

#endif
{

sys_creat(srcpath,cwd,errorflag,fourbitlv3,fourbitlv4,bitlv,threebitlv,

fourbitlv5,fourbitlv6,fourbitlv7,bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);
printf("Called Creat. Error=%u. Path=",errorflag);
print_path(srcpath)

}
::

#if !defined(myverif)
c==50 ->

#endif
{

copy_path(dstpath,tmppath);

sys_rename(srcpath,tmppath,cwd,errorflag,fourbitlv3,fourbitlv4,fourbitlv9,fourbitlv10,

bitlv,fourbitlv5,fourbitlv6,fourbitlv7,bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);
/* may alter paths!!!!!!!!!!!! */

printf("Called Rename. Error=%u. Src Path=",errorflag);
print_path(srcpath);
printf("Dst Path=");
print_path(dstpath)

}
::

#if !defined(myverif)
c==51 ->

#endif
{

sys_unlink(srcpath,cwd,errorflag,fourbitlv3,fourbitlv4,bitlv,fourbitlv5,fourbitlv6,fourbitlv7,
bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);

printf("Called Unlink. Error=%u. Path=",errorflag);
print_path(srcpath)

}
::

#if !defined(myverif)
c==52 ->

#endif
{

sys_rmdir(srcpath,cwd,errorflag,fourbitlv3,fourbitlv4,bitlv,fourbitlv5,fourbitlv6,fourbitlv7,
bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);

printf("Called Rmdir. Error=%u. Path=",errorflag);
print_path(srcpath)

}
::

69

#if !defined(myverif)
c==53 ->

#endif
{

skip;
printf("Called no function\n")

}
fi;
printf("\n");

#if !defined(myverif)
STDIN?c; /* carriage return */

#endif

progress_testharn:
printf("Report? (0:yes,1:no)\n");

#if !defined(myverif)
STDIN?c;

#endif
if /* Possibly report state of file system */
::

#if !defined(myverif)
c==48 ->

#endif
{

printdentries(dpool,fourbitlv,fourbitlv2);
printf("\n\n");
printinodes(ipool,fourbitlv);

}
::

#if !defined(myverif)
c==49 ->

#endif
skip

fi
#if !defined(myverif)

;
STDIN?c /* carriage return */

#endif
}
od;

end:
skip

}

D.7 Functions Supporting the Test Harness

inline cd(array,arg) /* scratch var cd_count */
{

d_step {
if
:: arg==0 -> { /* cd root */

array[0]=0;
array[1]=NoofNodes

}
:: arg==NoofNodes -> { /* cd .. */

/* assert(array[0]==0 && array[1]!=NoofNodes); Not root */
if /* replaces assertion for verification purposes */
:: array[0]!=0 || array[1]==NoofNodes
:: else {

cd_count=0;
do
:: array[cd_count]!=NoofNodes -> cd_count++
:: array[cd_count]==NoofNodes -> break
od;

/* assert(cd_count!=0); */
if /* replaces assertion for verification purposes */

70

:: cd_count==0
:: else

array[cd_count-1]=NoofNodes
fi

}
fi

}
:: else { /* cd id */

cd_count=0;
do
:: array[cd_count]!=NoofNodes -> cd_count++
:: array[cd_count]==NoofNodes -> break
od;

/* assert(cd_count+1<NoofNodes); */
if /* replaces assertion for verification purposes */
:: cd_count+1>=NoofNodes
:: else

concat_element(array,arg)
fi

}
fi

}
};

/* Choose an id between 1 and NoofNodes-1 - assumes max noofnodes is 8 */
inline choose_id (returnval)
{

d_step{
#if !defined(myverif)

STDIN?c;
#endif

if
::

 #if !defined(myverif)
c==49 &&

#endif
NoofNames-1>=1 -> returnval=1

::
#if !defined(myverif)

c==50 &&
#endif

NoofNames-1>=2 -> returnval=2
::

#if !defined(myverif)
c==51 &&

#endif
NoofNames-1>=3 -> returnval=3

::
#if !defined(myverif)

c==52 &&
#endif

NoofNames-1>=4 -> returnval=4
::

#if !defined(myverif)
c==53 &&

#endif
NoofNames-1>=5 -> returnval=5

::
#if !defined(myverif)

c==54 &&
#endif

NoofNames-1>=6 -> returnval=6
::

#if !defined(myverif)
c==55 &&

#endif

71

NoofNames-1>=7 -> returnval=7
fi

#if !defined(myverif)
;
printf("c=%c, returnval=%u\n",c,returnval);
STDIN?c /* Get rid of carriage return */

#endif
}

};

inline printdentries(dep,localvar,localvar2) { /* Needs 4 bit localvar */
d_step{

localvar=0;
printf("Dentry pool: \n\n");
do
:: localvar<=NoofNodes-1 -> {

if
:: dep.available[localvar] ==1 -> {

printf("\t Dentry %u in use\n",localvar);
printf("\t d_name = %u, d_inode = %u, d_parent = %u

\n",dep.dentries[localvar].d_iname,dep.dentries[localvar].d_inode,dep.dentries[localvar].d_parent);
printf("\n");
printf("d_count = %u\n\n", dep.dentries[localvar].d_count);

#if defined(myverif)
assert(dep.dentries[localvar].d_count==1);

#endif
printf("\t Siblings: ");
print_relations(dep.dentries[localvar].d_child,localvar2);
printf("\n \t Sub Directories: ");
print_relations(dep.dentries[localvar].d_subdirs,localvar2);
printf("\n\n");

}
:: else printf("\t Dentry %u not in use\n",localvar)
fi;
localvar++
}

:: localvar==NoofNodes -> break
od

} /*dstep */
};

72

Appendix E – Example from SMART Model

/**
Abstract model of a virtual file system (originally EXT2)
Author: Radu Siminiceanu (NIA)
Lsst update: July 2, 2007
**/

/* constants */

//int ND := 4; /* maximum number of dentries */
//int NI := 4; /* maximum number of inodes */
//int NP := 1; /* maximum number of processes */

/* reserved file indices */
int ROOT := 1;
int LOST_FOUND := 2;

/* i_node states */
int DELETING := 1;

/* hash function */
/* does nothing for now */
/* could be used IF implementing the dcache */
int hashvalue(int x) := x;

/*==*/
/* SMART options for state space generation */
/*==*/
Verbose true
Report true /* reports MDD stats */
IgnoreWeightClasses true /* deals with immediate events priorities */
Generations 5000 /* For variable reordering, if needed */
GarbageSize 499000
GarbageCollection GLOBAL

/* Recommended options for the state-space construction algorithm */
/* - Kronecker consistent: */
/* MDD_SATURATION -- standard on-the-fly: full MDD nodes */
/* MDD_SPARSE -- on-the-fly: sparse MDD nodes */
StateStorage MDD_SPARSE
/* Non-KC algorithms are junk */

/*==*/

spn EXT2(int nd, int ni, int np) := {

 /* Superblock */

 place
 superblock_root, /* not used */
 superblock_umount_lock, /* not used */
 superblock_lock, /* not used */

 dcache_lock, /* global lock on dcache */
 inode_lock; /* global lock on inodes */

 /* Convention used in this petri net:
 Locks and mutexes have the following values:
 if available, >0
 not avalibale, =0
 I.e.: getting a lock/mutex removes a token
 releasing a lock/mutex adds the token back
 */

 init(dcache_lock:1, inode_lock:1);

73

 partition(3*nd-2+ni+8*np+1:dcache_lock:inode_lock);

 /* D_Entries */

 for (int i in {1..nd}) {
 place
 d_allocated[i], /* is allocated? flag */
 d_parent[i], /* id of parent: 0=n/a, or 1..ND */
 d_count[i], /* reference count */
 d_lock[i], /* not used */
 d_inode[i], /* id of corresponding inode: 0=n/a, or 1..NI */
 d_subdirs[i]; /* number of subdirectories */

 /* put all places of dentry #i in partition #i */
 /* will result in large local subspace */
 partition(
 cond(i>1,3*i-4,1):d_allocated[i]:d_subdirs[i]:d_count[i]:d_lock[i],
 cond(i>1,3*i-3,1):d_parent[i],
 cond(i>1,3*i-2,1):d_inode[i]
);

 init(d_lock[i]:1);

 }

 /* Inodes section */

 for (int i in {1..ni}) {
 place
 i_allocated[i], /* is allocated ? */
 i_count[i], /* don't know what this is */
 i_lock[i], /* not used */
 i_state[i], /* not used */
 i_mutex[i]; /* used in create(): down(parent.d_inode->i_mutex)) */

 partition(3*nd-2+i:
 i_allocated[i]:
 i_count[i]:
 i_lock[i]:
 i_state[i]:
 i_mutex[i]
);

 init(i_mutex[i]:1); /* initially mutex available */
 init(i_lock[i]:1); /* initially lock available */
 }

 //===
 /* Processes */
 //===

 /* Cleanup process */

 place
 p_start_cleanup_d,
 p_end_cleanup_d,
 p_start_cleanup_i,
 p_end_cleanup_i;
 partition(
 3*nd-2+ni+8*np+2:p_start_cleanup_d:p_end_cleanup_d:
 p_start_cleanup_i:p_end_cleanup_i
);
 init(p_start_cleanup_d:1);
 trans
 t_start_cleanup_d,
 t_end_cleanup_d,

74

 t_start_cleanup_i,
 t_end_cleanup_i;

 for (int i in {1..nd}) {
 place p_cleanup_d[i];
 partition(3*nd-2+ni+8*np+2:p_cleanup_d[i]);
 trans
 t_skip_d[i],
 t_cleanup_d[i];
 }
 for (int i in {1..ni}) {
 place p_cleanup_i[i];
 partition(3*nd-2+ni+8*np+2:p_cleanup_i[i]);
 trans
 t_skip_i[i],
 t_cleanup_i[i];
 }
 arcs(
 p_start_cleanup_d:t_start_cleanup_d,
 t_start_cleanup_d:p_cleanup_d[1],
 dcache_lock:t_start_cleanup_d,
 p_cleanup_d[nd]:t_cleanup_d[nd],
 t_cleanup_d[nd]:p_end_cleanup_d,
 d_allocated[nd]:t_cleanup_d[nd]:tk(d_allocated[nd]),
 d_parent[nd]:t_cleanup_d[nd]:tk(d_parent[nd]),
 d_inode[nd]:t_cleanup_d[nd]:tk(d_inode[nd]),
 d_lock[nd]:t_cleanup_d[nd]:tk(d_lock[nd]),
 d_subdirs[nd]:t_cleanup_d[nd]:tk(d_subdirs[nd]),
 t_cleanup_d[nd]:d_lock[nd],
 p_cleanup_d[nd]:t_skip_d[nd],
 t_skip_d[nd]:p_end_cleanup_d,
 p_end_cleanup_d:t_end_cleanup_d,
 t_end_cleanup_d:p_start_cleanup_i,
 t_end_cleanup_d:dcache_lock
);
 inhibit(dcache_lock:t_end_cleanup_d);
 guard(
 t_cleanup_d[nd]:tk(d_count[nd])==0,
 t_skip_d[nd]:tk(d_count[nd])>0
);

 arcs(
 p_start_cleanup_i:t_start_cleanup_i,
 t_start_cleanup_i:p_cleanup_i[1],
 inode_lock:t_start_cleanup_i,
 p_cleanup_i[ni]:t_cleanup_i[ni],
 t_cleanup_i[ni]:p_end_cleanup_i,
 p_cleanup_i[ni]:t_skip_i[ni],
 t_skip_i[ni]:p_end_cleanup_i,
 i_allocated[ni]:t_cleanup_i[ni]:tk(i_allocated[ni]),
 i_lock[ni]:t_cleanup_i[ni]:tk(i_lock[ni]),
 i_state[ni]:t_cleanup_i[ni]:tk(i_state[ni]),
 i_mutex[ni]:t_cleanup_i[ni]:tk(i_mutex[ni]),
 t_cleanup_i[ni]:i_lock[ni],
 t_cleanup_i[ni]:i_mutex[ni],
 p_end_cleanup_i:t_end_cleanup_i,
 t_end_cleanup_i:p_start_cleanup_d,
 t_end_cleanup_i:inode_lock
);
 inhibit(inode_lock:t_end_cleanup_i);
 guard(
 t_cleanup_i[ni]:tk(i_count[ni])==0,
 t_skip_i[ni]:tk(i_count[ni])>0
);

 for (int i in {1..nd-1}) {
 arcs(

75

 p_cleanup_d[i]:t_cleanup_d[i],
 t_cleanup_d[i]:p_cleanup_d[i+1],
 d_allocated[i]:t_cleanup_d[i]:tk(d_allocated[i]),
 d_parent[i]:t_cleanup_d[i]:tk(d_parent[i]),
 d_inode[i]:t_cleanup_d[i]:tk(d_inode[i]),
 d_lock[i]:t_cleanup_d[i]:tk(d_lock[i]),
 d_subdirs[i]:t_cleanup_d[i]:tk(d_subdirs[i]),
 t_cleanup_d[i]:d_lock[i],
 p_cleanup_d[i]:t_skip_d[i],
 t_skip_d[i]:p_cleanup_d[i+1]
);
 guard(
 t_cleanup_d[i]:tk(d_count[i])==0,
 t_skip_d[i]:tk(d_count[i])>0
);
 }

 for (int i in {1..ni-1}) {
 arcs(
 p_cleanup_i[i]:t_cleanup_i[i],
 t_cleanup_i[i]:p_cleanup_i[i+1],
 i_allocated[i]:t_cleanup_i[i]:tk(i_allocated[i]),
 i_lock[i]:t_cleanup_i[i]:tk(i_lock[i]),
 i_state[i]:t_cleanup_i[i]:tk(i_state[i]),
 i_mutex[i]:t_cleanup_i[i]:tk(i_mutex[i]),
 t_cleanup_i[i]:i_lock[i],
 t_cleanup_i[i]:i_mutex[i],
 p_cleanup_i[i]:t_skip_i[i],
 t_skip_i[i]:p_cleanup_i[i+1]
);
 guard(
 t_cleanup_i[i]:tk(i_count[i])==0,
 t_skip_i[i]:tk(i_count[i])>0
);
 }

 //--
 // Concurrent processes
 //--

 for (int p in {1..np}) {

 place
 /* "program counters" */
 p_begin[p],
 p_start_create[p],
 p_start_unlink[p],
 p_start_mkdir[p],
 p_start_rmdir[p],
 p_file[p],
 p_parent[p],
 p_inode[p];

 init(p_begin[p]:1);

 partition(
 3*nd-2+ni+8*p:p_begin[p]:p_start_create[p]:p_start_unlink[p]:p_start_mkdir[p]:p_start_rmdir[p],
 3*nd-2+ni+8*p-1:p_parent[p],
 3*nd-2+ni+8*p-2:p_file[p],
 3*nd-2+ni+8*p-3:p_inode[p]
);

 trans
 t_start_create[p],
 t_start_unlink[p],

76

 t_start_mkdir[p],
 t_start_rmdir[p];
 arcs(
 p_begin[p]:t_start_create[p],
 t_start_create[p]:p_start_create[p],
 /* clear old arguments */
 p_file[p]:t_start_create[p]:tk(p_file[p]),
 p_parent[p]:t_start_create[p]:tk(p_parent[p]),
 p_inode[p]:t_start_create[p]:tk(p_inode[p]),
 p_begin[p]:t_start_unlink[p],
 t_start_unlink[p]:p_start_unlink[p],
 /* clear old arguments */
 p_file[p]:t_start_unlink[p]:tk(p_file[p]),
 p_parent[p]:t_start_unlink[p]:tk(p_parent[p]),
 p_inode[p]:t_start_unlink[p]:tk(p_inode[p]),
 p_begin[p]:t_start_mkdir[p],
 t_start_mkdir[p]:p_start_mkdir[p],
 /* clear old arguments */
 p_file[p]:t_start_mkdir[p]:tk(p_file[p]),
 p_parent[p]:t_start_mkdir[p]:tk(p_parent[p]),
 p_inode[p]:t_start_mkdir[p]:tk(p_inode[p]),
 p_begin[p]:t_start_rmdir[p],
 t_start_rmdir[p]:p_start_rmdir[p],
 /* clear old arguments */
 p_file[p]:t_start_rmdir[p]:tk(p_file[p]),
 p_parent[p]:t_start_rmdir[p]:tk(p_parent[p]),
 p_inode[p]:t_start_rmdir[p]:tk(p_inode[p])
);

 /* ----------------------------------- */
 /* PN "program counters" for create() */
 /* ----------------------------------- */
 place
 p_create_lookup[p], // path_lookup(parent,file)
 p_create_line1[p], // if (!parent.is_allocated)
 p_create_line2[p], // return ERROR
 p_create_line3[p], // down(parent.d_inode->i_mutex)
 p_create_line4[p], // if (file.is_allocated && !is_directory(file))
 p_create_line5[p], // up(parent.d_inode->i_mutex)
 p_create_line6[p], // path_release(file)
 p_create_line7[p], // return SUCCESS
 p_create_line8[p], // if (file.is_alocated && is_directory(file))
 p_create_line9[p], // up(parent.d_inode->i_mutex)
 p_create_line10[p], // path_release(file)
 p_create_line11[p], // return ERROR
 p_create_line12[p], // spin_lock(dcache_lock)
 p_create_line13[p], // file = allocate_dentry()
 p_create_line14[p], // if (file.is_allocated)
 p_create_line15[p], // spin_unlock(dcache_loc)
 p_create_line16[p], // up(parent.d_inode->i_mutex)
 p_create_line17[p], // dput(parent)

 p_create_line18[p], // return ERROR
 p_create_line19[p], // dget(file)
 p_create_line20[p], // spin_lock(inode_lock)
 p_create_line21[p], // itmp = allocate_inode(file)
 p_create_line22[p], // file.d_inode = &itmp
 p_create_line23[p], // spin_unlock(inode_lock)
 p_create_line24[p], // if (file.d_inode->is_allocated)
 p_create_line25[p], // atomic_write(d_count)
 p_create_line26[p], // dput(parent)
 p_create_line27[p], // spin_unlock(dcache_lock)
 p_create_line28[p], // up(parent.d_inode->i_mutex)
 p_create_line29[p], // return ERROR
 p_create_line30[p], // update(parent)
 p_create_line31[p], // path_release(file)
 p_create_line32[p], // spin_unlock(dcache_lock)

77

 p_create_line33[p], // up(parent.d_inode->i_mutex)
 p_create_line34[p]; // return SUCCESS
 partition(
 3*nd-2+ni+8*p-4:
 p_create_line1[p]:p_create_line2[p]:p_create_line3[p]:
 p_create_line4[p]:p_create_line5[p]:p_create_line6[p]:
 p_create_line7[p]:p_create_line8[p]:p_create_line9[p]:
 p_create_line10[p]:p_create_line11[p]:p_create_line12[p]:
 p_create_line13[p]:p_create_line14[p]:p_create_line15[p]:
 p_create_line16[p]:p_create_line17[p]:p_create_line18[p]:
 p_create_line19[p]:p_create_line20[p]:p_create_line21[p]:
 p_create_line22[p]:p_create_line23[p]:p_create_line24[p]:
 p_create_line25[p]:p_create_line26[p]:p_create_line27[p]:
 p_create_line28[p]:p_create_line29[p]:p_create_line30[p]:
 p_create_line31[p]:p_create_line32[p]:p_create_line33[p]:
 p_create_line34[p]:p_create_lookup[p]
);

 /* ----- Create transitions ----- */

 /* ---------- Create step 0 ---------- */
 // --- initiate call: store new params
 for (int i in {1..nd}) {
 for (int j in {1..nd}) {
 trans
 t_create_step0[p][i][j];
 arcs(
 p_start_create[p]:t_create_step0[p][i][j],
 t_create_step0[p][i][j]:p_create_lookup[p],
 /* store new values */
 p_file[p]:t_create_step0[p][i][j]:tk(p_file[p]),
 p_parent[p]:t_create_step0[p][i][j]:tk(p_parent[p]),
 t_create_step0[p][i][j]:p_file[p]:i,
 t_create_step0[p][i][j]:p_parent[p]:j
);
 inhibit(p_create_lookup[p]:t_create_step0[p][i][j]);
 }
 }
 /* ---------- Create: lookup ---------- */
 // --- path_lookup(parent,file)
 for (int i in {1..nd}) {
 for (int j in {1..nd}) {
 trans
 t_create_lookup[p][i][j];
 arcs(
 p_create_lookup[p]:t_create_lookup[p][i][j],
 t_create_lookup[p][i][j]:p_create_line1[p],
 t_create_lookup[p][i][j]:d_count[i]:cond(tk(d_allocated[i])>0, 1, 0)
);
 cond(i!=j, arcs(
 t_create_lookup[p][i][j]:d_count[j]:cond(tk(d_allocated[j])>0, 1, 0)), null);
 guard(
 t_create_lookup[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
);
 inhibit(d_count[i]:t_create_lookup[p][i][j]:nd);
 cond(i!=j, inhibit(d_count[j]:t_create_lookup[p][i][j]:nd), null);
 }
 }
 /* ---------- Create step 1 ---------- */
 // --- if (!parent.is_allocated)
 for (int i in {1..nd}) {
 for (int j in {1..nd}) {
 trans
 t_create_step1_then[p][i][j],
 t_create_step1_else[p][i][j];
 arcs(
 p_create_line1[p]:t_create_step1_then[p][i][j],

78

 t_create_step1_then[p][i][j]:p_create_line2[p],
 d_count[i]:t_create_step1_then[p][i][j]:cond(tk(d_allocated[i])>0, 1, 0),
 p_create_line1[p]:t_create_step1_else[p][i][j],
 t_create_step1_else[p][i][j]:p_create_line3[p]
);
 guard(
 t_create_step1_then[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j & tk(d_allocated[j])==0,
 t_create_step1_else[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j & tk(d_allocated[j])>0
);
 }
 }
 /* ---------- Create step 2 ---------- */
 // --- return ERROR
 trans
 t_create_step2[p];
 arcs(
 p_create_line2[p]:t_create_step2[p],
 t_create_step2[p]:p_begin[p]
);
 inhibit(p_begin[p]:t_create_step2[p]);
 /* ---------- Create step 3 ---------- */
 // --- down(parent.d_inode->i_mutex)
 for (int j in {1..nd}) {
 for (int k in {1..ni}) {
 trans
 t_create_step3[p][j][k];
 arcs(
 p_create_line3[p]:t_create_step3[p][j][k],
 t_create_step3[p][j][k]:p_create_line4[p],
 i_mutex[k]:t_create_step3[p][j][k]
);
 guard(
 t_create_step3[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
);
 }
 }
 /* ---------- Create step 4 ---------- */
 // --- if (file.is_allocated && !is_directory(file))
 for (int i in {1..nd}) {
 trans
 t_create_step4_then[p][i],
 t_create_step4_else[p][i];
 arcs(
 p_create_line4[p]:t_create_step4_then[p][i],
 t_create_step4_then[p][i]:p_create_line5[p],
 p_create_line4[p]:t_create_step4_else[p][i],
 t_create_step4_else[p][i]:p_create_line8[p]
);
 guard(
 t_create_step4_then[p][i]:tk(p_file[p])==i & tk(d_allocated[i])>0 & tk(d_subdirs[i])==0,
 t_create_step4_else[p][i]:tk(p_file[p])==i & !(tk(d_allocated[i])>0 & tk(d_subdirs[i])==0)
);
 }
 /* ---------- Create step 5 ---------- */
 // --- up(parent.d_inode->i_mutex)
 for (int j in {1..nd}) {
 for (int k in {1..ni}) {
 trans
 t_create_step5[p][j][k];
 arcs(
 p_create_line5[p]:t_create_step5[p][j][k],
 t_create_step5[p][j][k]:p_create_line6[p],
 t_create_step5[p][j][k]:i_mutex[k]
);
 guard(
 t_create_step5[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
);

79

 inhibit(i_mutex[k]:t_create_step5[p][j][k]:np);
 }
 }
 /* ---------- Create step 6 ---------- */
 // --- path_release(file)
 for (int i in {1..nd}) {
 for (int j in {1..nd}) {
 trans
 t_create_step6[p][i][j];
 arcs(
 p_create_line6[p]:t_create_step6[p][i][j],
 t_create_step6[p][i][j]:p_create_line7[p],
 d_count[i]:t_create_step6[p][i][j]:cond(tk(d_count[i])>1, 1, 0)
);
 cond(i!=j, arcs(
 d_count[j]:t_create_step6[p][i][j]:cond(tk(d_count[j])>1, 1, 0)), null);
 guard(
 t_create_step6[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
);
 }
 }
 /* ---------- Create step 7 ---------- */
 // --- return SUCCESS
 trans
 t_create_step7[p];
 arcs(
 p_create_line7[p]:t_create_step7[p],
 t_create_step7[p]:p_begin[p]
);
 inhibit(p_begin[p]:t_create_step7[p]);
 /* ---------- Create step 8 ---------- */
 // --- if (file.is_allocated && is_directory(file))
 for (int i in {1..nd}) {
 trans
 t_create_step8_then[p][i],
 t_create_step8_else[p][i];
 arcs(
 p_create_line8[p]:t_create_step8_then[p][i],
 t_create_step8_then[p][i]:p_create_line9[p],
 p_create_line8[p]:t_create_step8_else[p][i],
 t_create_step8_else[p][i]:p_create_line12[p]
);
 guard(
 t_create_step8_then[p][i]:tk(p_file[p])==i & tk(d_allocated[i])>0 & tk(d_subdirs[i])>0,
 t_create_step8_else[p][i]:tk(p_file[p])==i & !(tk(d_allocated[i])>0 & tk(d_subdirs[i])>0)
);
 }
 /* ---------- Create step 9 ---------- */
 // --- up(parent.d_inode->i_mutex)
 for (int j in {1..nd}) {
 for (int k in {1..ni}) {
 trans
 t_create_step9[p][j][k];
 arcs(
 p_create_line9[p]:t_create_step9[p][j][k],
 t_create_step9[p][j][k]:p_create_line10[p],
 t_create_step9[p][j][k]:i_mutex[k]
);
 guard(
 t_create_step9[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
);
 inhibit(i_mutex[k]:t_create_step9[p][j][k]:np);
 }
 }
 /* ---------- Create step 10 ---------- */
 // --- path_release(file)
 for (int i in {1..nd}) {

80

 for (int j in {1..nd}) {
 trans
 t_create_step10[p][i][j];
 arcs(
 p_create_line10[p]:t_create_step10[p][i][j],

 t_create_step10[p][i][j]:p_create_line11[p],
 d_count[i]:t_create_step10[p][i][j]:cond(tk(d_count[i])>1, 1, 0)
);
 cond(i!=j, arcs(
 d_count[j]:t_create_step10[p][i][j]:cond(tk(d_count[j])>1, 1, 0)), null);
 guard(
 t_create_step10[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
);
 }
 }
 /* ---------- Create step 11 ---------- */
 // --- return SUCCESS
 trans
 t_create_step11[p];
 arcs(
 p_create_line11[p]:t_create_step11[p],
 t_create_step11[p]:p_begin[p]
);
 inhibit(p_begin[p]:t_create_step11[p]);
 /* ---------- Create step 12 ---------- */
 // --- spin_lock(dcache_lock)
 trans
 t_create_step12[p];
 arcs(
 p_create_line12[p]:t_create_step12[p],
 t_create_step12[p]:p_create_line13[p],
 dcache_lock:t_create_step12[p]
);
 /* ---------- Create step 13 ---------- */
 // --- allocate_dentry
 for (int i in {1..nd}) {
 for (int j in {1..nd}) {
 trans
 t_create_step13[p][i][j];
 arcs(
 p_create_line13[p]:t_create_step13[p][i][j],
 t_create_step13[p][i][j]:p_create_line14[p],
 d_allocated[i]:t_create_step13[p][i][j]:tk(d_allocated[i]),
 t_create_step13[p][i][j]:d_allocated[i],
 d_count[i]:t_create_step13[p][i][j]:tk(d_count[i]),
 t_create_step13[p][i][j]:d_count[i],
 d_lock[i]:t_create_step13[p][i][j]:tk(d_lock[i]),
 t_create_step13[p][i][j]:d_lock[i],
 d_parent[i]:t_create_step13[p][i][j]:tk(d_parent[i]),
 t_create_step13[p][i][j]:d_parent[i]:j
);
 guard(
 t_create_step13[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j & tk(d_allocated[i])==0
);
 }
 }
 /* ---------- Create step 14 ---------- */
 // --- if (!file.is_allocated)
 for (int i in {1..nd}) {
 trans
 t_create_step14_then[p][i],
 t_create_step14_else[p][i];
 arcs(
 p_create_line14[p]:t_create_step14_then[p][i],
 t_create_step14_then[p][i]:p_create_line15[p],
 p_create_line14[p]:t_create_step14_else[p][i],
 t_create_step14_else[p][i]:p_create_line19[p]

81

);
 guard(
 t_create_step14_then[p][i]:tk(p_file[p])==i & tk(d_allocated[i])==0,
 t_create_step14_else[p][i]:tk(p_file[p])==i & tk(d_allocated[i])>0
);
 }

 /* ---------- Create step 15 ---------- */
 // --- spin_unlock(dcache_lock)
 trans
 t_create_step15[p];
 arcs(
 p_create_line15[p]:t_create_step15[p],
 t_create_step15[p]:p_create_line16[p],
 t_create_step15[p]:dcache_lock
);
 inhibit(dcache_lock:t_create_step15[p]:2);
 /* ---------- Create step 16 ---------- */
 // --- up(parent.d_inode->i_mutex)
 for (int j in {1..nd}) {
 for (int k in {1..ni}) {
 trans
 t_create_step16[p][j][k];

 arcs(
 p_create_line16[p]:t_create_step16[p][j][k],
 t_create_step16[p][j][k]:p_create_line17[p],
 t_create_step16[p][j][k]:i_mutex[k]
);
 guard(
 t_create_step16[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
);
 inhibit(i_mutex[k]:t_create_step16[p][j][k]:np);
 }
 }
 /* ---------- Create step 17 ---------- */
 // --- dput(parent)
 for (int j in {1..nd}) {
 trans
 t_create_step17[p][j];
 arcs(
 p_create_line17[p]:t_create_step17[p][j],
 t_create_step17[p][j]:p_create_line18[p],
 d_count[j]:t_create_step17[p][j]:cond(tk(d_count[j])>1, 1, 0)
);
 guard(
 t_create_step17[p][j]:tk(p_parent[p])==j
);
 }
 /* ---------- Create step 18 ---------- */
 // --- return ERROR
 trans
 t_create_step18[p];
 arcs(
 p_create_line18[p]:t_create_step18[p],
 t_create_step18[p]:p_begin[p]
);
 inhibit(p_begin[p]:t_create_step18[p]);
 /* ---------- Create step 19 ---------- */
 // --- dget(file)
 for (int i in {1..nd}) {
 trans
 t_create_step19[p][i];
 arcs(
 p_create_line19[p]:t_create_step19[p][i],
 t_create_step19[p][i]:p_create_line20[p],
 t_create_step19[p][i]:d_count[i]
);
 guard(

82

 t_create_step19[p][i]:tk(p_file[p])==i
);
 inhibit(d_count[i]:t_create_step19[p][i]:np+1);
 }
 /* ---------- Create step 20 ---------- */
 // --- spin_lock(inode_lock)
 trans
 t_create_step20[p];
 arcs(
 p_create_line20[p]:t_create_step20[p],
 t_create_step20[p]:p_create_line21[p],
 inode_lock:t_create_step20[p]
);
 /* ---------- Create step 21 ---------- */
 // --- allocate_inode(file)
 for (int k in {2..ni}) {
 trans
 t_create_step21[p][k];
 arcs(
 p_create_line21[p]:t_create_step21[p][k],
 t_create_step21[p][k]:p_create_line22[p],
 t_create_step21[p][k]:i_allocated[k],
 i_count[k]:t_create_step21[p][k]:tk(i_count[k]),
 t_create_step21[p][k]:i_count[k],
 i_mutex[k]:t_create_step21[p][k]:tk(i_mutex[k]),
 t_create_step21[p][k]:i_mutex[k],
 i_lock[k]:t_create_step21[p][k]:tk(i_lock[k]),
 t_create_step21[p][k]:i_lock[k],
 p_inode[p]:t_create_step21[p][k]:tk(p_inode[p]),
 t_create_step21[p][k]:p_inode[p]:k
);
 guard(
 t_create_step21[p][k]:tk(i_allocated[k])==0
);
 inhibit(i_allocated[k]:t_create_step21[p][k]);
 /* allocate first inode available */
 /* i.e. if allocating inode k, then all inodes before k are already allocated */
 for (int h in {1..k-1}) {
 arcs(
 i_allocated[h]:t_create_step21[p][k],
 t_create_step21[p][k]:i_allocated[h]
);
 }
 }
 /* no inodes available */
 trans
 t_create_step21x[p];
 arcs(
 p_create_line21[p]:t_create_step21x[p],
 t_create_step21x[p]:p_create_line22[p],
 p_inode[p]:t_create_step21x[p]:tk(p_inode[p]),
 t_create_step21x[p]:p_inode[p]:ni+1
);
 for (int h in {1..ni}) {
 arcs(
 i_allocated[h]:t_create_step21x[p],
 t_create_step21x[p]:i_allocated[h]
);
 }
 /* ---------- Create step 22 ---------- */
 // --- file.d_inode = &itmp
 for (int i in {1..nd}) {
 for (int k in {2..ni+1}) {
 trans
 t_create_step22[p][i][k];
 arcs(
 p_create_line22[p]:t_create_step22[p][i][k],

83

 t_create_step22[p][i][k]:p_create_line23[p],
 d_inode[i]:t_create_step22[p][i][k]:tk(d_inode[i]),
 t_create_step22[p][i][k]:d_inode[i]:k
);
 guard(
 t_create_step22[p][i][k]:tk(p_file[p])==i & tk(p_inode[p])==k
);
 }
 }
 /* ---------- Create step 23 ---------- */
 // --- spin_unlock(inode_lock)
 trans
 t_create_step23[p];
 arcs(
 p_create_line23[p]:t_create_step23[p],
 t_create_step23[p]:p_create_line24[p],
 t_create_step23[p]:inode_lock
);
 inhibit(inode_lock:t_create_step23[p]);
 /* ---------- Create step 24 ---------- */
 // --- if (!file.d_inode->is_allocated)
 for (int k in {1..ni}) {
 trans
 t_create_step24_then[p][k],
 t_create_step24_else[p][k];
 arcs(
 p_create_line24[p]:t_create_step24_then[p][k],
 t_create_step24_then[p][k]:p_create_line25[p],
 p_create_line24[p]:t_create_step24_else[p][k],
 t_create_step24_else[p][k]:p_create_line30[p]
);
 guard(
 t_create_step24_then[p][k]:tk(p_inode[p])==k & tk(i_allocated[k])==0,
 t_create_step24_else[p][k]:tk(p_inode[p])==k & tk(i_allocated[k])>0
);
 }
 /* none available */
 trans
 t_create_step24_thenx[p];
 arcs(
 p_create_line24[p]:t_create_step24_thenx[p],
 t_create_step24_thenx[p]:p_create_line25[p]
);
 guard(
 t_create_step24_thenx[p]:tk(p_inode[p])==ni+1
);
 /* ---------- Create step 25 ---------- */
 // --- atomic_write(file.d_count, 0)
 for (int i in {1..nd}) {
 trans
 t_create_step25[p][i];
 arcs(
 p_create_line25[p]:t_create_step25[p][i],
 t_create_step25[p][i]:p_create_line26[p],
 d_count[i]:t_create_step25[p][i]:tk(d_count[i]),
 d_allocated[i]:t_create_step25[p][i]:tk(d_allocated[i]),
 d_parent[i]:t_create_step25[p][i]:tk(d_parent[i])
);
 guard(
 t_create_step25[p][i]:tk(p_file[p])==i
);
 }
 /* ---------- Create step 26 ---------- */
 // --- dput(parent)
 for (int j in {1..nd}) {
 trans
 t_create_step26[p][j];

84

 arcs(
 p_create_line26[p]:t_create_step26[p][j],
 t_create_step26[p][j]:p_create_line27[p],
 d_count[j]:t_create_step26[p][j]:cond(tk(d_count[j])>1, 1, 0)
);
 guard(
 t_create_step26[p][j]:tk(p_parent[p])==j
);
 }
 /* ---------- Create step 27 ---------- */
 // --- spin_unlock(dcache_lock)
 trans
 t_create_step27[p];
 arcs(
 p_create_line27[p]:t_create_step27[p],
 t_create_step27[p]:p_create_line28[p],
 t_create_step27[p]:dcache_lock
);
 inhibit(dcache_lock:t_create_step27[p]);
 /* ---------- Create step 28 ---------- */
 // --- up(parent.d_inode->i_mutex)
 for (int j in {1..nd}) {
 for (int k in {1..ni}) {
 trans
 t_create_step28[p][j][k];
 arcs(
 p_create_line28[p]:t_create_step28[p][j][k],
 t_create_step28[p][j][k]:p_create_line29[p],
 t_create_step28[p][j][k]:i_mutex[k]
);
 guard(
 t_create_step28[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
);
 inhibit(i_mutex[k]:t_create_step28[p][j][k]);
 }
 }
 /* ---------- Create step 29 ---------- */
 // --- return ERROR
 trans
 t_create_step29[p];
 arcs(
 p_create_line29[p]:t_create_step29[p],
 t_create_step29[p]:p_begin[p]
);
 inhibit(p_begin[p]:t_create_step29[p]);
 /* ---------- Create step 30 ---------- */
 // --- update_parent()
 for (int i in {1..nd}) {
 for (int j in {1..nd}) {
 trans
 t_create_step30[p][i][j];
 arcs(
 p_create_line30[p]:t_create_step30[p][i][j],
 t_create_step30[p][i][j]:p_create_line31[p],
 d_parent[i]:t_create_step30[p][i][j]:tk(d_parent[i]),
 t_create_step30[p][i][j]:d_parent[i]:j,
 t_create_step30[p][i][j]:d_subdirs[j]
);
 guard(
 t_create_step30[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
);
 inhibit(d_subdirs[j]:t_create_step30[p][i][j]:nd);
 }
 }
 /* ---------- Create step 31 ---------- */
 // --- path_release(file)
 for (int i in {1..nd}) {

85

 for (int j in {1..nd}) {
 trans
 t_create_step31[p][i][j];
 arcs(
 p_create_line31[p]:t_create_step31[p][i][j],
 t_create_step31[p][i][j]:p_create_line32[p],
 d_count[i]:t_create_step31[p][i][j]:cond(tk(d_count[i])>1, 1, 0)
);
 cond(i!=j, arcs(
 d_count[j]:t_create_step31[p][i][j]:cond(tk(d_count[j])>1, 1, 0)), null);
 guard(
 t_create_step31[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
);
 }
 }
 /* ---------- Create step 32 ---------- */
 // --- spin_unlock(dcache_lock)
 trans
 t_create_step32[p];
 arcs(
 p_create_line32[p]:t_create_step32[p],
 t_create_step32[p]:p_create_line33[p],
 t_create_step32[p]:dcache_lock
);
 inhibit(dcache_lock:t_create_step32[p]);
 /* ---------- Create step 33 ---------- */
 // --- up(parent.d_inode->i_mutex)
 for (int j in {1..nd}) {
 for (int k in {1..ni}) {
 trans
 t_create_step33[p][j][k];
 arcs(
 p_create_line33[p]:t_create_step33[p][j][k],
 t_create_step33[p][j][k]:p_create_line34[p],
 t_create_step33[p][j][k]:i_mutex[k]
);
 guard(
 t_create_step33[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
);
 inhibit(i_mutex[k]:t_create_step33[p][j][k]);
 }
 }
 /* ---------- Create step 34 ---------- */
 // --- return SUCCESS
 trans
 t_create_step34[p];
 arcs(
 p_create_line34[p]:t_create_step34[p],
 t_create_step34[p]:p_begin[p]
);
 inhibit(p_begin[p]:t_create_step34[p]);

 [...]
 [Unlink code]
 [Mkdir code]
 [Rmdir code]
 [...]

 } // ============= end process p

 // initialization
 init(
 /* root node is created at mount
 has itself and lost+found as subdirs
 has itself as parent */

86

 d_allocated[ROOT]:1,
 d_inode[ROOT]:ROOT,
 d_parent[ROOT]:ROOT,
 d_subdirs[ROOT]:2,
 d_count[ROOT]:1,
 i_count[ROOT]:1,
 i_allocated[ROOT]:1,
 /* lost+found node is created at mount
 has itself as subdir
 has root as parent */
 d_allocated[LOST_FOUND]:1,
 d_inode[LOST_FOUND]:LOST_FOUND,
 d_parent[LOST_FOUND]:ROOT,
 d_subdirs[LOST_FOUND]:1,
 d_count[LOST_FOUND]:1,
 i_count[LOST_FOUND]:1,
 i_allocated[LOST_FOUND]:1
);

 real ro := reorder;
 bigint ns := num_states(false);
 bool db := debug;

 stateset Deadlock := difference(reachable, prev(potential(true)));
 bigint nDeadlock := card(Deadlock);
 bool pDeadlock := printset(Deadlock);
 bool tDeadlock := EFtrace(initialstate, Deadlock);

};

int ND := read_int("Number of d_entries");
int NI := read_int("Number of i_nodes");
int NP := read_int("Number of processes");
compute(ND);
compute(NI);
compute(NP);

print("**\n");
print("* VFS abstract model *\n");
print("**\n");
print("* System parameters:\n");
print("* - Dentry pool size: ", ND, "\n");
print("* - Inode pool size: ", NI, "\n");
print("* - Number of processes: ", NP, "\n");

//compute(EXT2(ND,NI,NP).ro);
compute(EXT2(ND,NI,NP).db);
print("\nNumber of reachable states: ", EXT2(ND,NI,NP).ns, "\n");

print("\nNumber of deadlocked states: ", EXT2(ND,NI,NP).nDeadlock);
compute(EXT2(ND,NI,NP).pDeadlock);
compute(EXT2(ND,NI,NP).tDeadlock);

