
1

Model-checking Part of a Linux File System*

Andy Galloway†, Jan Tobias Mühlberg†, Radu Siminiceanu‡ and Gerald Lüttgen†

†Department of Computer Science, University of York, UK
‡National Institute of Aerospace (NIA), Hampton VA, USA

Abstract

We present our experiences with model checking part of a Linux file system. The 
work is set in the context of Hoare’s verification grand challenge, and, in particular, 
Joshi and Holzmann’s mini-challenge to build a verifiable file system. The primary 
aim of the work was to construct a larger scale case study upon which to measure our 
own research into model-checking technology. However, the choice of case study 
material was influenced by the aforementioned mini-challenge. The secondary aim of 
the work was to add to the existing confidence in the Linux code, for example by 
“testing” improbable situations through exhaustive model checking. Two models were 
produced: a Promela model, which was analysed using SPIN, and a Petri-Net-based 
model, which was analysed using versions of the SMART model-checker.  The 
approach adopted was incremental, initially focussing on the basic functions of 
Linux’s Virtual File Systems layer. The report presents intermediate results.

                                                
* We gratefully acknowledge the support of the UK EPSRC, who funded the research under grant 
GR/S86211/01. 
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1. Introduction

In [Hoa03], Hoare proposes a 15-year grand challenge which calls on the program 
verification community to collaborate on building verifiable programs. At the first 
Verified Software: Theories, Tools, Experiments conference [Eth05,MW07], Joshi 
and Holzmann [JH05] proposed a more modest mini-challenge, as a significant 
stepping stone towards meeting Hoare’s challenge. Their mini-challenge was to build 
a verifiable file system, such as a file system conforming to the POSIX interface 
standard [Ope03]. 

Program verification in the context of Hoare’s challenge specifically involves full 
demonstration of program correctness, rather than more general uses of the term 
“verification” (e.g. testing). Broadly speaking, there are two approaches to program 
verification. On one hand there is the constructive approach, in which formal 
reasoning is first employed to establish the validity of a specification and then the 
correctness of an implementation with respect to such a specification. On the other 
hand there is analytical approach, which aims to build a valid abstract model of an 
existing implementation and show that this model satisfies some set of correctness 
criteria. The former approach is emphasised by methods such as Z [Spi95], B 
[Abr96], VDM [Jon90], whilst the latter is the focus of certain “model-checking” 
approaches such as SPIN [Hol03]. 

In this report we present our experiences with a file system case study, in the spirit 
of Joshi and Holzmann’s mini-challenge, in which we applied an analytical approach 
to verification. The case study involved producing an abstract model of part of the 
Linux kernel and analysing the model using two distinct model-checkers, SPIN and 
SMART. The report describes the intermediate findings of the project. 

The remainder of the report is organised as follows: section 2 describes the aim of 
the project and section 3 introduces the Linux file system architecture. In section 4 we 
describe the scope and methodology used in the study. Sections 5 and 6 concentrate 
on abstraction; section 5 explains how the variables and data structures of the Linux 
file system were abstracted, and section 6 focuses on abstraction of the Linux code 
(i.e. algorithms). Sections 7 and 8 discuss the models produced by the study – one in 
Promela/SPIN and one in SMART. Section 9 presents related work, and section 10 
presents the conclusions of the study. There are five appendices, which cover an 
example of part of a Linux header file, the information abstraction process, the 
pseudocode produced by abstracting the Linux code, extracts from the SPIN model 
and extracts from the SMART model.
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2. Aims

The work described formed part of a larger body of work into efficient symbolic 
model-checking for interleaving systems [CLS01,CJMS06,CLM07,ELC07,ELS07, 
YCL07a,YCL07b]. In particular, collaborative work between the University of 
California, US, Iowa State University, US, the NIA (National Institute of Aerospace), 
US and the University of York, UK, has resulted in a tool, SMART [CJMS06], which 
implements efficient model-checking algorithms for interleaving systems. The tool 
forms important background for the study. 

The work had two complimentary aims:

1. To produce a large case study on which the performance of the SMART model-
checker (and prototypes for variants implementing parallelised algorithms) 
could be measured and compared.

2. To assess the feasibility of analytical program verification on part of the Linux 
kernel.

The first aim was primary. Existing case studies for SMART tended to be modest 
sized academic examples, and we were searching for a larger example, of real-world 
significance, to provide a further benchmark.

The secondary aim attempted to add to existing confidence in its correctness of the 
Linux kernel. In particular, the goal was to assess the effectiveness of model-checking 
technology for this purpose – for example, by analysing scenarios that were unlikely 
to arise in testing or in subsequent use. Three potential findings were envisaged, with 
increasing likelihood: i) the corruption (deviation from intent) of the underlying data 
state, deadlock or livelock, leading to an observable error (bug); ii) the (possibly 
transient) corruption of the underlying data state, not leading to an observable error 
(but at risk of revealing itself in future revisions); iii) an absence of errors, hopefully 
contributing to evidence of the correctness of the implementation. 
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3. The Linux File System Architecture

The logical architecture of a Linux file system is shown in Figure 1.  The elements 
shown are as follows [Bov02]: 

- Application: The user program.
- C POSIX library: Provides functions facilitating file access as defined by the 

POSIX Standard [Ope03], e.g. open file open(), delete file remove(), make 
directory mkdir(), and remove directory rmdir().

 System call interface: Propagates requests for system resources from the 
application program into the operating system kernel.

- Virtual File System (VFS): This layer is an indirection layer. It provides the 
data structures and interfaces needed for system calls related to a standard 
Unix file system. Its main strength is to provide a common abstract interface 
allowing many different kinds of specific file systems to coexist. The VFS 
data structures are instantiated when a file system is mounted with the 
appropriate call addresses into the Specific File System layer. The VFS also 
provides some default processing and caching for its data structures. Since the 
VFS is used in a multi-threaded environment, serving system calls from within 
different process contexts, it incorporates various locking mechanisms in order 
to sequentialise concurrent access to file systems.

- Specific File System (e.g. EXT2, EXT3, FAT): This layer provides the 
processing supporting a particular file system. The specific file system 
operates on the data structures provided by the VFS. Its purpose is to provide 
an interface between the VFS and the physical storage by transforming the 
VFS data structures into their on-disk representation and back. Therefore it 
defines the data structures used by the media representation, and manages the 
way elements of the file system are read in from, and written out to, the media.

- Device Drivers: These implement access control – i.e. reading from and 
writing to – the physical media.

3.1 Concurrency in the VFS

The VFS runs in a highly concurrent environment in which its interface functions 
can be invoked from multiple concurrently executing application programs. Hence, 
computer architectures supporting symmetric multi-processing, as well as normal 
process preemption caused by scheduling on single processor machines, gives rise to 
the indeterminate sequencing of the respective threads. Therefore, mechanisms 
implementing mutual exclusion are widely used in order to prevent inconsistencies 
arising in this context. In the case of the VFS that means that each internal data 
structure consists of multiple mutual exclusive components such as atomic values, 
mutexes, reader/writer semaphores and spinlocks (cf. [CRK05]) assuring 
sequentialisation of operations manipulating these structures. In addition to this, 
several global locks are employed to protect the global lists of data structures while 
entries are appended or removed. In order to serve a single system call, usually 
multiple locks have to be obtained and released in the right order. Failing to do so can 
drive the VFS into deadlock conditions or undefined states due to memory corruption.
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Figure 1. The logical hierarchy of the Linux file system.

3.2 Data Structures in the VFS

Of the information structures which make up the file system, the most important 
are super blocks, dentries, and inodes. In most cases the names of these structures are 
used in different contexts outside the VFS. In the following we only consider the 
VFS-related structure definitions and not their file system specific components or 
their on-disk representations. Further details on these structures can be found in 
[Bov02] and in the respective parts of the kernel header files.

- super_block objects describe the abstract properties of the file system, such as 
its type (e.g. EXT2), the physical device on which it resides, the total size of the 
file system and the mount point. They also point to the root dentry, as well as 
lists of all further dentries and inodes of the file system, and contain several 
structures used for locking. Furthermore, there are several flags defining the 
characteristics of the file system (e.g. whether it is read-only).  Operations for 
manipulating the super block by the VFS and from the system call interface as 
well as callback functions for the underlying specific file system are stored as 
function pointers. The super blocks of all currently mounted file systems are 
stored in a circular doubly linked list. At the device level, similar super block 
structures are maintained on the media – many specific file systems (e.g. EXT2) 
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maintain multiple instances of their super block for fault tolerance (and 
recovery) purposes. The struct super_block is defined in include/linux/fs.h in the 
Linux source hierarchy.

- dentry objects collectively describe the structure of the file system. The dentry 
contains the file’s name, though the file need not be a regular file – for example 
it can be a directory or device. There is also a shortened version of the name, 
which is used in hashing the dentries for speed of access (the Directory Entry 
Cache, dcache). Other important fields include: the parent of the dentry (root 
points to itself), the dentry’s list of children and siblings, operations for use on 
dentries by VFS and from system calls, hard link information (pointers to other 
dentries), mount information, a link to the relevant super block, and locking 
structures. The dentry also carries a reference to its corresponding inode, as well 
as a reference count, which approximately corresponds to the number of 
processes currently using the dentry. Dentries do not to have corresponding 
structures at the device level, they merely function as a cache for the 
information being carried by the corresponding inode structure. The definition 
of the dentry struct can be found in include/linux/dcache.h.

- inode objects carry information specific to a file (regular file, directory or 
device). This includes, for instance, a backward link to the dentries referencing 
the inode, file permissions, file type, file size, operations for use on inodes by 
the VFS as well as call backs to the underlying specific file system, device 
specific information (for devices) and information about how the file is memory 
mapped. At the device level, some specific file systems (e.g. EXT2) use a 
structure with the name inode. However, the information carried by the inode is 
different at the device level (e.g. subsuming dentry information, sector mapping 
rather than memory mapping etc.). The struct inode is defined in 
include/linux/fs.h in the Linux source.

3.3 Concurrency and Data Structures

As well as the static view of the data structures used by the VFS, there is an 
additional dimension introduced by concurrency. For example, Figure 2 illustrates 
how three different processes interact with the same file. 

The diagram shows three processes using their own file object, two processes are 
using the same hard link to the corresponding inode object. Hence, only two dentry
objects are required, one for each hard link, pointing to the same inode. The 
components of this picture which are considered as part of the study (see section 4) 
are highlighted.

3.4 VFS Code Architecture

The VFS implementation as provided by Linux 2.6.18 consists mainly of the three 
public header files fs.h, namei.h and dcache.h residing in include/linux of the kernel's 
source hierarchy. These files define the public interface including the aforementioned 
data structures. For example, appendix A provides the definition of  the dentry struct 
(from dcache.h). Note, however, that most definitions are dependent on other parts of 
the Linux kernel and employ various external data types and functions. 
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Figure 2. Data Structures Process Perspective

The actual implementations of system calls provided by the VFS can be found in 
the fs subdirectory of the kernel source tree. Given our scope, the files dcache.c, 
namei.c, inode.c, stat.c and open.c are of most importance since they contain the logic 
for the system calls we are most interested in. The VFS implements system calls such 
as creat(), open() and stat(). Most of these calls have a path name argument passed to 
them from the calling application program. Resolving these path names and returning 
the respective dentry is the central part of the VFS's  Directory Entry Cache dcache. 

Let us explain the interaction between the different parts of the VFS on the 
example of the creat() system call. According to POSIX, the signature of creat() is 
defined as:

      int creat(const char *pathname, mode_t mode);

where pathname is the full path to the file which is supposed to be created, and mode
the permissions with which the file should be created. In the following we discard all 
permission handling.

The VFS entry point from creat() is the function sys_creat() defined in open.c, 
which redirects the system call to

     sys_open(pathname, O_CREAT | O_WRONLY | O_TRUNC, mode);

Hence, creat() is handled as a special case of the open() system call. sys_open() then 
calls do_sys_open(), which calls do_filp_open(), which finally invokes open_namei(). 
The function open_namei() resides in namei.c and represents the main part of the 
open routine. It first uses do_path_lookup() to traverse the dentry-representation of 
the directory tree, starting either from the root directory or from the current working 
directory of the calling process. This involves increasing and decreasing usage 
counters (dget()/dput(),from dcache.c) and obtaining locks for dentries belonging to 
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the path. Furthermore, dentries for path components that are not already cached need 
to be allocated and filled with data obtained from the specific file system 
implementation using real_lookup(). If at least the parent directory of the file to be 
created exists, do_path_lookup() will return successfully, passing a pointer to the 
parent's dentry. If the target file for the creat() operation does not exist yet, the path 
lookup functions will return with a “negative” dentry, i.e. a dentry, which is not 
associated with an inode yet. In that case, open_namei() will invoke vfs_creat() in 
order to propagate the creation of an inode down to the specific file system and link 
the newly created inode to the dentry. At this point the file creation is complete. 
Please note that we outline only one path through the open routine, discarding security 
checks and error cases for simplicity.

Besides the details given above, the process of creating a file involves obtaining and 
releasing several reader/writer semaphores as well as the i_mutex from the parent's 
inode and the global spinlocks protecting the global lists of  dentries and inodes in 
case the execution of the system call is preempted by the scheduler. We will give 
more details on this in Section 6.

The source code of the functions involved in creating a file on the VFS level 
comprises of roughly 5k lines of code, not including data structure definitions and 
macro-expansion. The entire VFS implementation is about 70k lines long.
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4. Methodology

The approach adopted was incremental, with the aim of starting with a small 
abstract model, and then expanding and adding detail. The initial scope, and 
incremental direction, was defined in several dimensions:

- We decided to concentrate initially on the generic aspects of the Linux file 
system implementation – the Virtual File System systems layer. The aim was to 
eventually evolve the model by adding further details supporting a specific file 
system (and appropriate media), such as EXT2. 

- We initially ruled out multi-host concurrency and decided to model just a limited 
number of (single host) processes. In the case of one of the models (the SPIN 
model) the decision was taken to start with a single process. The aim was then 
to extend this by adding further concurrency i.e. additional processes, and 
possibly multiple hosts.

- As a starting point for the modelling activity, we chose to incorporate only the 
basic operations on files and directories: create file, remove file, make directory, 
remove directory and rename. The intention was to extend this in the future to 
include for example mounting, unmounting, links etc. and other POSIX 
commands.

- Our approach was to abstract the internal information structures used in 
maintaining the file system by selecting certain fields. The intention was to 
expand the selected fields later to include further detail. The initial fields of 
interest were selected according to their relevance in the scope outlined above –
i.e. relevance to VFS layer, concurrency and basic file system operations. 

- For practical purposes it was necessary to impose a limit on the size of the file 
system the models were able to maintain. In order to keep state spaces tractable 
this limit was set initially to 8 nodes (including root), with the intention to 
expand later if viable. The limit of 8 nodes was chosen to give each node (e.g. 
dentry, inode) a 3 bit address, and this was a hard limit imposed by the types of 
the variables and structures used in the models. We also aimed to be generic 
with respect to a soft limit of less than 8 nodes, so that models could be 
executed on various sized file systems up to the hard limit1.

It had always been the intention to construct a SMART model of the file system 
implementation; we also took the decision to develop a SPIN model. There were two 
reasons for this: firstly, the SPIN model would provide a valuable basis for 
comparison. Comparisons could be made between models, modelling processes and 
the effectiveness of the model-checking support tools. Secondly, at the outset of the 
study we believed that the SPIN model would provide a vital intermediate 
representation of requirements, from which the SMART model could be developed. 
This turned out not to be the case. A pseudocode (incomplete C) representation was 
developed to support both modelling activities, and this turned out to be an adequate 
basis for both modelling activities to proceed more or less in parallel. SPIN was 

                                                
1 The soft limit was essentially used to manage state space sizes.
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chosen, as opposed to modelling languages, because of its maturity, exposure, and 
ability to support both compound data structures and concurrency.

As well as the existing SMART model-checker [CJMS06], recent research has 
produced prototypes which parallelise the algorithms for use in a shared-memory 
(multi-core) setting [ELC07,ELS07]. Thus, in addition to comparing results from the 
different models, one of the purposes of the study was to compare results for different 
variants of SMART.

Identify key 
variables and 
information 
structures

Identify properties 
of interest, define 

representation, and 
estimate state space

Derive abstraction 
of LINUX code 
(pseudocode)

Construct 
Models and Run 

Checks

Review and Add
Features

Figure 3. The process followed by the study.

The reason for building the models, other than to draw comparisons, was to 
attempt to find (potential) errors.  The search focussed on two principal kinds of error. 
Firstly, as part of the process of identifying the information fields of interest we 
sought to identify consistency properties. These were relationships between the data 
that should hold whilst the file system is in a stable state – i.e. when it is not in the 
process of being altered in some way. An example of such a consistency property 
might be for instance that the sibling and child fields for a particular dentry do not 
contradict the parent fields in its peer dentries. Secondly, locking systems were a key 
part of the implementation. They existed to ensure mutual exclusion over access to 
parts of the file system structure (e.g. particular dentries), and thus ensure structural 
consistency. One of the things we were interested in was whether any situations might 
exist (however improbable) that might cause the locking mechanisms to jam – i.e. 
result in deadlock or livelock. An example of such a situation might for instance 
involve two interdependent processes competing for a spinlock, where their 
interdependency prevents the spinlock from ever being released (and thus progress 
being made).  From a methodological point of view the intention was that both 
models would investigate both potential sources of error. 

An outline of the process intended to be followed by the study is shown in figure 
3. Note that the outline does not show minor iterations. For example, the information 
structures identified in the first task initially yielded state spaces that were higher than 
desired. A minor iteration could have been shown around these two activities. 
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5. Identifying Key Variables and Structures

The variables and structures were selected for inclusion in the models on the basis 
of the scope defined by the methodology. Initially, this involved information relevant 
to the VFS level (internal representation), the logical structure of the file system 
(parents, siblings, children etc.), and the locking mechanisms (spinlocks, mutexes, 
reader/writer semaphores). Consequently, the superblock, dentry and inode structures 
were all identified for inclusion, and the most significant issue became which fields 
from the structures to include, which to omit, and how to represent/abstract the fields 
of interest. Certain other structures were considered initially, such as the file structure 
(used to maintain the status of files associated with each inode). However, it was 
decided that concentrating on the file system structure itself was more important 
initially than modelling access to its contents. Structures such as this were therefore 
deferred until future iterations.

The process of identifying the structures and fields of interest was based on the 
information contained in the header files from the kernel source, i.e. the struct 
definitions for superblocks, dentries and inodes. For each, we considered how each 
field was used by the file system implementation (this involved considerable 
investigation in cases were the usage was unclear or subtle). Each field was then 
assigned a relevance (high, medium or low) according to the scoping  rules outlined in 
the methodology. 

Another important consideration was the allocation and deallocation of memory to 
store the data structures of interest. For the superblock this was not a problem, since 
there would be just one. However, for dentries and inodes the number of data 
structures in use at any particular time would vary; new structures would need to be 
allocated and, potentially, old structures would need to be deallocated. Clearly, in 
order for any model to be analysable (i.e. have a sufficiently small search space) we 
would only have a limited supply of variables with which to work. There were two 
options here, and resolving the choice was essential in deciding which fields to 
include and which to omit. The first choice was to define a static structure, 
representing a maximal file system, bounded in width and depth. In this approach 
potential parent and child etc. links would be implicitly inferable from the file system 
node in question, and assignment/deassignment could be achieved by marking 
whether nodes were in use. The second option was to dynamically allocate from a 
pool of available structures, and maintain the parent/child etc. links explicitly. i.e. 
produce an abstract model of dynamic memory allocation. 

The situation was made more complex by the way that the data structures are 
maintained in the file system implementation. In the implementation a data structure 
can have three different kinds of status. It can be allocated and assigned (in use, part 
of the file system), allocated but deassigned (not part of the file system structure but 
not deallocated), and deallocated. This is so that reuse and deallocation of unused 
nodes can occur efficiently2. 

We decided on a strategy based on abstract dynamic memory. The rationale 
behind this was twofold: firstly it allowed for greater flexibility in file system 
structures we would be able to model check; secondly, it would be a more faithful 
model of the implementation both in terms of the way structures are allocated and 
assigned, and in the way the overall file system structure was maintained (i.e. with 
explicit links).

                                                
2 i.e. by a separate low-priority clean-up process.
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A final consideration was whether (and how) to model the dcache. The dcache 
involves a hash table allowing efficient access to dentries based on (part of) their 
name. The issue was whether, strategically, we wanted to incorporate the hash table 
and hashing functions, and how much it was going to cost us in terms of variable 
space. Clearly, whilst the hash table speeds up access to data structures in the 
implementation, its inclusion was likely to slow down an exhaustive exploration of 
the state space of a prospective model (and involve more memory). 

Initially we aimed to include the dcache and hashing functions, but after iterating 
around the process of representing the variables of interest and estimating state space 
sizes (see the sequel), we decided to omit it. We decided instead to concentrate on 
modelling the core functionality of the file system. Where the dcache and hashing 
functions were used in the implementation (i.e. to find a dentry corresponding to a 
name), these could be modelled as simple searches across the small pool of dentries 
available for allocation. Thus it was possible to model the effect of hashing and 
retrieval and localise the impact of not having a hash table when abstracting the 
implementation’s algorithms.

5.1 Results of Analysis of Data Structures

Having resolved the issues of dynamic memory allocation and the dcache it was 
possible to stabilise the fields of interest in the structures we needed. Appendix B.1 
shows the final tables for superblocks, dentries and inodes that resulted as part of this 
activity. 

For the dentry table, for example:

- d_flags, d_alias, d_time, d_fsdata, d_cookie, d_mouted could all be judged 
low relevance given the methodological scope.

- d_name was judged low relevance given that there was another field d_iname
used to record a shortened version of the name (for hashing purposes). Since 
we would only need a small number of names, d_iname was selected as the 
field in which to store the name.

- d_op and d_sb were judged low relevance as the operations on dentries and 
each dentry’s superblock could be “hard wired” in the any model given the 
scope. I.e. we would only use one set of functions, there would always be only 
one superblock.

- d_hash was considered low relevance in the context of our decision not to 
model the dcache.

- d_lock was judged high relevance. Locking was considered a high priority 
according to our predetermined scope (important for concurrency).

- d_inode, d_parent, d_child, d_subdirs were all judged high relevance, as they 
capture the structure of the file system (corresponding inode, parent directory, 
siblings and children respectively).

- d_lru and d_rcu were problematic. They were eventually assigned relevances 
of medium and high respectively. Preliminary investigation into their use in 
the implementation was inconclusive and we were unsure how critical they 
would turn out to be in the modelling exercise. This was our best assessment at 
the time3.

                                                
3 In the end, neither featured significantly in the models produced
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- d_count was assigned a relevance of high. This was a very important field, 
recording whether a dentry was assigned (when above 0) and the number of 
processes accessing a dentry (when above 1). It turned out to be especially 
important for validating the algorithms abstracted from the implementation. 

5.2 Representation and State Space

Once the data structures and fields of interest had been assigned a relevance, the 
next stage was to select fields, decide on their representation and estimate the 
potential size of the state space. This was achieved initially by selecting the fields of 
high relevance; the intention was to review and add lower priority fields if the 
potential state space was sufficiently low. The first step was to decide a strategy for 
representing each field, and estimate the number of bits required. Appendix B.2 
shows the results of this activity.

For example, considering the dentry table:

- d_inode and d_parent were assigned 3 bits each, allowing one to reference a 
maximum of 8 inodes and dentries in the file system.

- d_child and d_subdirs were allocated 8 bits each, allowing up to 8 siblings and 
children of a dentry to be marked rather than stored as a linked list. 

- d_iname was allocated 3 bits allowing for 8 different names (and thus the 
maximal width of the directory structure).

- d_count was allocated 3 bits, allowing up to 2 processes to be accessing a 
dentry at a time (with space for another 4 processes).

- d_lock was initially assigned 3 bits, allowing for 1 bit giving the status of the 
lock, 1 bit for the process (up to 2) holding the lock, and 1 bit indicating a 
waiting process4.

- d_rcu was allocated 4 bits5.

Given the bit allocations it was now possible to calculate the potential information 
space of a model – that is, the number of states (ignoring control flow) that a model 
using the data model would exhibit. Knowing that control flow (i.e. abstract program 
counters) would add a further dimension to this calculation, we aimed to keep this to a 
minimum; the aim was for a figure of the order 250 – 2500, based on previous model-
checking experience6. 

The number of bits needed for each dentry was, for example, 35. For inodes it was 
26. 8 of each were needed, yielding (35+26)*8=488, plus a superblock at 9. That 
made 2497, which was deemed acceptable – although it meant that including lower 
relevance data fields was something that would not be possible until after the initial 
modelling phase of the study.

                                                
4 Retrospectively, the process ID and wait queue (for fairness purposes) were not significant in the 
models produced. 
5 Retrospectively, d_rcu was not a significant feature of the models produced.
6 These were the reasonable upper bounds we expected to be able to check. This figure did not include 
control flow, additional variables etc., but it was a potential figure – not every possible data state would 
be a reachable data state in the model. In addition, the intent was to make the number of nodes in the 
system a generic parameter to any model, i.e. what we were attempting to estimate was not the actual 
state space but the upper bound on a spectrum of different potential spaces. 
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5.3 Identification of Properties of Interest

Once the relevant fields were decided, it was possible to identify specific 
properties of interest. The aim was that these, in addition to more general properties 
such as deadlock freedom, would form the basis of the verification exercise. By 
showing that such properties held at stable points in the model (i.e. between calls to 
the functions operating on the file system), it would be possible to show that the file 
system was maintained in a consistent state, and thus infer conclusions about the 
correctness of the model (and implementation).

The consistency properties identified were of two forms:

- structural properties: expressing the static relationships between the 
information structures of the file system that ought to be maintained by the 
functions operating on them.

- reference properties: expressing constraints on the reference counters in the 
file system (notably d_count). I.e. that the reference counters were maintained 
correctly by the functions operating on the file system.

Examples of structural properties included the following:

- that the inode referenced by each dentry (in d_inode) was assigned7 and 
referenced the right dentry (in i_dentry)

- that the siblings and children of each dentry (d_child and d_subdirs
respectvely) were assigned and that their parent references (d_parent) agreed.

There was one important reference property, which was:

- that the d_count was always maintained at a sensible value a stable points in 
the model (i.e. when no process was accessing the file system). The sensible 
value depended upon whether the model was designed to deallocate unused 
nodes immediately (then d_count then should always be 1 for allocated nodes) 
or whether it was designed to mark nodes for deferred deletion (d_count could 
also carry a 0 value). Both deallocation strategies were considered. In other 
words, the property was designed to check that the operations on the file 
system did not cause the reference count to “drift” over repeated calls.

5.4 Retrospective Comments

At the time of writing, has only been possible to go through the process of 
abstracting the information structures once. Future work should certainly include a 
review of this phase of the study. In hindsight, most of the decisions taken at this 
point worked well but a few did not. For example, the decision was taken not to 
represent the inode reference count (i_count).  The rationale behind this was that 
because of our initial scope there would be a one to one relationship between dentries 
and inodes in the system. This meant that we ought to be able to use the dentry 
reference count (d_count) as a surrogate value for i_count, since they ought always to 
be the same. However, this made the code abstraction and modelling phases more 
difficult, as disentangling the inode logic (involving i_count) from the dentry logic in 

                                                
7 “Assigned” meaning part of the file system, i.e. memory allocated and marked as in use (d_count>0).
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at least one place became problematic (due to concurrency considerations). In 
addition, we eventually ended up with several redundant data fields in the models 
produced.

Another aspect of this phase of the study that was less effective than hoped was 
the use and relevance of the consistency properties identified. One of the reasons for 
this was simply that, given constraints in resources, we have not made as much 
progress as we would have liked adding the consistency properties to our models. 
However, another reason stems from the way the static relationships are maintained 
by the implementation, and this aspect was unforeseen. When nodes are added or 
removed from the file system the new static relationships are computed locally for the 
parent node (and children) affected by the change. However, this is not achieved by 
modifying the existing relationships – instead the new relationships are computed 
from scratch from the parent (d_parent) references (c.f. the update_parent() function 
in pseudocode and models below). Our view was that this devalued the use of certain 
structural properties as a basis for verification. In particular, it would perhaps have 
made more strategic sense to abstract the algorithm computing the relationships in 
question, and verify it independently from the main file system model. This would 
have achieved much the same result as including structural properties in the main 
model, but would have been a more efficient way of working.
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6. Abstracting from the Linux Code

Despite our initial hope of automating the process of abstracting a model from the 
VFS implementation that correctly reflects the way the VFS handles the creation and 
removal of files and directories, it turned out to be one of the most difficult parts of 
this case study.

The main reasons for these difficulties can be found in the size of the VFS 
implementation, the heavy use of dynamic memory allocation and the utilisation of 
function pointers. Furthermore, concurrency issues – an important focus for our 
modelling approach – contributed a great deal to the number of model revisions that 
were required in order to eliminate errors.

6.1 Modex

Back in 1999, Holzmann and Smith [HS99] developed the tool Modex. It can be 
used to mechanically extract high-level verification models for SPIN from 
implementation level C code. In order to do so, Modex requires a user-defined test-
harness guiding it through the implementation under consideration. As presented in 
the previous section, we already knew which operations and which bits of the VFS 
data structures we are interested in, enabling us to define a test driver and to run 
Modex on the VFS code.

Unfortunately the tool failed parsing the kernel source. We unsuccessfully 
experimented with unmodified and preprocessed source code. Our assumption is that 
Modex cannot deal with those fragments of the Linux source that do not comply with 
the ANSI C standard or contain compiler-dependent code.

6.2 Pseudocode

    After the realisation that automatically abstracting a model from the VFS sources 
was not possible, we decided to manually inspect the code in order to identify the 
functions operating on those parts of the VFS data structures we were interested in. 
The goal of this step was to provide some abstract pseudocode of the VFS, which 
could then be translated into models for SPIN and SMART. We decided to produce 
pseudocode in a C-like syntax because this would be fairly close to the original code 
as well as to a Promela model for SPIN.
    Although the authors are familiar with the internals of the Linux kernel and the 
development of Linux device drivers, none of us had prior experience with the VFS 
and the file system infrastructure. In order to avoid doing a completely manual 
analysis of the code, which would require us to manually follow function pointer calls 
and to perform macro-expansion, we decided to generate call traces into the running 
kernel in order to get an impression about what is done in which order. Our initial 
hope was to be able to automatically extract a basic model of the locking operations 
used in the system calls listed below:

- mount(): Mount a file system. Since we are not modelling the physical storage, 
we were mainly interested in understanding what the in-memory view of an empty, 
freshly mounted file system is.
- umount(): Not used.
- creat(): Create a file.



19

- open(): Open an existing file (not used) or create new file. Contains the actual 
logic for creat().
- close(): Close file opened with open(). Not used.
- unlink(): Remove a file.
- mkdir(): Create a directory.
- rmdir(): Remove a directory.

Those system calls marked as “not used” were initially considered as important. 
However, in the end we decided not to include them into the models in order to avoid 
extending the model’s state space by introducing per-process lists of open files and an 
abstraction of the physical medium as well as an on-disk representation of the VFS 
data structures.

To obtain function traces from a running Linux kernel we adopted the KFT8 tool to 
work with Linux 2.6.18 and implemented a few simple test drivers that initialised 
KFT for a particular system call, did the call in respect of a separate file system used 
in our experiments, and obtained the trace. KFT itself employs the finstrument-
functions9  capability of the compiler to add instrumentation callouts to every function 
entry and exit which are used to dump the jump and return addresses to a trace log. 
With the help of the kernel’s symbol table, the log entries could be translated into the 
respective function names. The following listing represents an excerpt of the call trace 
for the creat() system call.  Addresses have been translated into function names and 
most functions related to permission checking as well as operations on the specific 
file system layer and the physical device have been removed for the sake of 
simplicity:

 sys_creat
 |  sys_open
 |  |  getname
 |  |  |  kmem_cache_alloc
 |  |  |  strncpy_from_user
 |  |  get_unused_fd
 |  |  |  find_next_zero_bit
 |  |  |  expand_files
 |  |  filp_open
 |  |  |  open_namei
 |  |  |  |  path_lookup
 |  |  |  |  |  link_path_walk
 |  |  |  |  |  |  __link_path_walk
 |  |  |  |  |  |  |  permission
 |  |  |  |  |  |  |  do_lookup
 |  |  |  |  |  |  |  |  __d_lookup
 |  |  |  |  |  |  |  |  __follow_mount
 |  |  |  |  |  |  |  |  |  lookup_mnt
 |  |  |  |  |  |  |  |  |  dput
 |  |  |  |  |  |  |  |  |  |  _atomic_dec_and_lock
 |  |  |  |  |  |  |  dput
 |  |  |  |  |  |  |  |  _atomic_dec_and_lock
 |  |  |  |  |  |  |  permission
 |  |  |  |  |  |  dput
 |  |  |  |  |  |  |  _atomic_dec_and_lock
 |  |  |  |  __lookup_hash
 |  |  |  |  |  permission

                                                
8 Kernel Function Trace, c.f. http://tree.celinuxforum.org/CelfPubWiki/KernelFunctionTrace
9 c.f. http://gcc.gnu.org/onlinedocs/gcc-4.2.2/gcc/Code-Gen-Options.htm
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 |  |  |  |  |  cached_lookup
 |  |  |  |  |  |  __d_lookup
 |  |  |  |  |  |  d_lookup
 |  |  |  |  |  |  |  __d_lookup
 |  |  |  |  |  d_alloc
 |  |  |  |  |  ext2_lookup
 |  |  |  |  |  |  d_instantiate
 |  |  |  |  |  |  |  dummy_d_instantiate
 |  |  |  |  |  |  d_rehash
 |  |  |  |  |  |  |  __d_rehash
 |  |  |  |  vfs_create
 |  |  |  |  |  permission
 |  |  |  |  |  dummy_inode_create
 |  |  |  |  |  ext2_create
 |  |  |  |  dput
 |  |  |  |  |  _atomic_dec_and_lock
 |  |  |  |  may_open
 |  |  |  |  |  permission
 |  |  |  dentry_open
 |  |  |  |  get_empty_filp
 |  |  |  |  get_write_access
 |  |  |  |  file_move
 |  |  |  |  generic_file_open
 |  |  |  |  file_ra_state_init
 |  |  fd_install
 |  |  kmem_cache_free

    As can be seen, the trace gives an excellent overview of the control flow inside the 
VFS implementation. It can immediately be noticed that the main logic of sys_creat()
is in sys_open(), which calls path_lookup() in order to traverse the file hierarchy up to 
the point at which the file is supposed to be created, and then invokes vfs_create()
performing the actual file creation. We can also see some of the locking related 
functionality, namely the

dput
|  _atomic_dec_and_lock

calls. However, the view of the VFS we obtained from call traces is incomplete and a 
great deal of effort had to be spent in manual code inspection. The main reasons for 
this are as follows:

1. The call trace does not reveal what a particular function does on those parts of 
the VFS data structures we are interested in.

2. Several important function calls are missing in the trace. That is because some 
functions could not be instrumented because they are supposed to be called 
from an atomic context in which performing blocking I/O operations (i.e. 
writing out a log message) is not permitted.

3. Macros were not instrumented.

The final pseudocode was developed in respect of the decisions taken during 
scoping (see section 4) and data abstraction (see section 5). In particular:

1. The models were supposed to have a fixed number of inodes and dentries. We 
did not have “real” allocation and deallocation of these structures.
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2. Each inode was assigned to at most one dentry. We supported neither symbolic 
nor hard links.

3. We did not have an underlying specific file system. Hence, “negative” dentries 
were only allowed in the intermediate steps of the algorithm and non-empty 
inodes without a respective dentry were ruled out.

4. We did not model the hash bucket used by the dcache.

Most of these decisions contributed to simplifying the pseudocode by allowing us 
to exclude implementation code handling exceptions and corner cases. However, due 
to the huge amount of source code to analyse, and the complexity caused by 
concurrency handling and the use of macros in order to refer to the current process’s 
context, we sometimes ended up abstracting the intent rather than the implementation 
itself. While this process allowed us to abstract the core behaviour of the VFS in 
about 3k lines of pseudo code, instead of the 70k LOC of the implementation, it 
turned out to be tedious and error prone.  Hence, several errors were introduced in the 
first versions of the pseudo code, which could only be identified later on in the 
verification process. For each error, the model in which the error was identified was 
compared with the pseudocode, and then the pseudocode was checked against the 
implementation, in order to locate the source of the inconsistency or deadlock.

The following code represents our abstract view of the creat() function. For the 
sake of simplicity we decided not to model it as a special case of the open() call. All 
the data types used in the code section are basically equivalent to the type declarations 
found in the Linux headers. However, those parts of the structs we did not consider 
important have been removed. Furthermore, we aimed to restrict the usage of pointers 
and cast operations to an absolute minimum. In some cases they are still required in 
order to make the pseudo code compile, which is a very helpful feature in order 
identify type inconsistencies before actually transcribing the pseudo code into a model 
for SMART or SPIN.

/*
 * $Author: muehlber $ : $RCSfile: pseudo_creat.c,v $
 * $Revision: 1.11 $, $Date: 2007/11/09 17:51:15 $
 */

/* sys_creat is actually a specific behaviour of sys_open() */
int sys_creat (string path)
{

  lookup_res_t l;
  inode_t itmp;
  dentry_t parent, file;

  l = path_lookup (path);
  parent = *l.parent;
  file = *l.file;

  if (!parent.is_allocated)
   {
    if (file.is_allocated) /* deals with root look up */
     { dput(file); }
    return (ERROR);
   }
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  down (parent.d_inode->i_mutex);

  if (file.is_allocated && !is_directory (file))
   { up (parent.d_inode->i_mutex);
     path_release (file);
     return (SUCCESS); }
  if (file.is_allocated && is_directory (file))
   { up (parent.d_inode->i_mutex);
     path_release (file);
     return (ERROR); }

  spin_lock (dcache_lock);

  file = allocate_dentry(last_component(path), parent);
  if (!file.is_allocated)
   { spin_unlock (dcache_lock);
     up (parent.d_inode->i_mutex);
     dput (parent);
    return (ERROR); }

  dget (file);

  spin_lock (inode_lock);
  itmp = allocate_inode(file);
  file.d_inode = &itmp;
  spin_unlock (inode_lock);
  if (!file.d_inode->is_allocated)
   { atomic_write (file.d_count, 0);
     dput (parent);
     spin_unlock (dcache_lock);
     up (parent.d_inode->i_mutex);
     return (ERROR); }

The full pseudocode for the system calls sys_creat(), sys_unlink(), sys_mkdir(), 
sys_rmdir() and sys_rename() are given in appendices C.2 to C.6. As shown in 
Appendix C.1, we also provide pseudo implementations or at least prototypes for 
various additional VFS functions such as path_lookup() or path_release(), as well as 
for functions that belong to other parts of the kernel’s infrastructure.  Examples are 
the mutex handlers up() and down() and the spinlock interface provided by 
spin_lock() and spin_unlock(). Another important thing to point out is that our data 
structures contain additional fields such as the is_allocated field in the dentry and 
inode structures. These are required in order to designate a particular dentry or inode
as allocated or released in the absence of real allocation, deallocation and pointer 
references. Respectively, functions such as allocate_dentry() or allocate_inode() are 
supposed to find and return data structures in a fixed-size array of dentries or inodes, 
for which the is_allocated-flag is not set. As a result of this, running out of free inodes 
or dentries have to be valid end states in the resulting SPIN and SMART models.

The pseudo code presented in Appendix C, which was derived from the 
implementation by manual inspection, has been evaluated by extensive reviewing and 
cross-checking against the implementation. This is the highest level of confidence that 
can be gained in the pseudo code, in the absence of tools that can automatically 
synthesise models from Linux kernel source.
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7. The SPIN Model

Constructing the Spin model was essentially a two-stage process. The first step 
was to produce the core of the model on top of which the pseudocode functionality 
could be constructed. This involved defining the data structures and equivalent of 
dynamic memory allocation. Once the core of the model was in place the pseudocode 
was carefully transcribed into the Promela syntax. This involved taking into account 
the details of the interface to the core model as well as certain stylistic choices (see 
below). The full model can be found on-line10.

7.1 The Core of the Model

The first step in constructing the core of the model was to translate the data 
structures discussed in section 5 into the Promela syntax. Examples of these (for 
dentry and inode) are shown in Appendix D.1. The structures derive directly from the 
information given in appendix B.2 (information modelling). There are two additional 
type definitions, other than those relating to section B.2 and these concern the model 
of dynamic memory. The definitions for dentrypool and inodepool introduce the 
mechanism by which dentries and inodes are allocated. Each has an array of size 
NoofNodes, the generic parameter used to limit the maximum number of nodes in the 
file system (8 or less), of structure required (dentry or inode). Each also has a bit array 
available (size 8) to record whether the corresponding structure is allocated or not11.

Once the data structures were defined it was possible to model the basic 
mechanisms for allocating and deallocating dentries and inodes. Two examples, the 
functions for de/allocating dentries are given in Appendix D.2. Note that the variable 
dep, used as a parameter to the inline, is (expected to be) a structure of type 
dentrypool. Note also that the de/allocation functions are primarily defined in terms of 
d_steps, meaning that they are treated as atomic functions in the statespace 
construction12. Note finally that if an error occurs in the allocation process, meaning 
that all the nodes are already allocated, the allocation function jumps to end. end is 
defined as a valid end state, meaning failure to allocate is not treated as an error in the 
model.

The final stage in constructing the core of the model was to add the functions 
required by (but not defined in) the pseudocode, or needed by the test harness. These 
included, for example, low-level file system operations, such as for allocating and 
initialising dentries and inodes (allocate_dentry(), allocate_inode()), initialising the 
superblock (init_superblock()), and finding named dentries (modelfinddentry()). They 
also included low-level functions for manipulating path names (is_prefix(), 
concat_element(), prepend(), last_component()). Two examples: allocate_dentry() 
and modelfinddentry() (which supersedes the use of the dcache hash table as discussed 
in section 5) are included in Appendix D.3. allocate_dentry() is straightforward; it 

                                                
10 http://www.cs.york.ac.uk/~andyg/filesystem/spinmodel.pml
11 Note that an alternative model of the data structures was explored in which the information was bit-
packed in order to reduce the size of the state vector (and thus memory used in model-checking). 
However, the bit-packed version did not produce significant savings in state vector size when used in 
conjunction with the SPIN “compression” option. It also required some processing overheads (model 
complexity) in the storing and retrieval functions. The approach was abandoned early in the modelling 
process.
12 This reduces the size of the state space as intermediate points in the d_step are not represented. It 
also allows hiding of the local variables, which reduces the overall size of the state vector.
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allocates a node using alloc_dentry(), sets the parent and name (both inline 
arguments) and sets the remaining fields to their default values (e.g. no children or 
siblings). modelfinddentry() searches the dentry pool for a dentry with a specified 
parent and name. Note that two assertions are employed to associate constraints with 
the points in the model they are expected to hold. These are employed throughout the 
model and their use is described in more detail below. For example, if the function is 
employed when the parent node is Null valued (equal to the NoofNodes parameter) 
then the dentry name being looked up should be root (which has a unique name 0 
corresponding to “/”). 

7.2 Transcribing the Pseudocode

Transcribing the pseudocode involved translation of the algorithms into the 
Promela syntax whilst taking into account the interface to core of the model plus a 
few stylistic considerations (see below). The first stage was to transcribe the 
supporting functions as given in appendix D. These included: down(), up() (for 
mutexes); spinlock_lock(), spinlock_unlock() (for spinlocks); dget(), dput(), 
path_release() (for maintaining d_count); is_directory() (to establish the status of a 
dentry); get_dentry() (for looking up named dentry); and update_parent() (for 
deriving the new child/sibling relationships). With these functions in place it was then 
possible to transcribe the path_lookup() function, which was integral to every system 
call we were modelling.

The functions get_dentry(), update_parent() and path_lookup(), the most 
important of the supporting functions, are given in appendix D.4. 

get_dentry() is the supporting function which looks up a dentry for a specific 
parent and name. It interfaces to modelfinddentry(), given in D.3, the model-specific 
version of the look up process described above. Note the use of the assertion to check 
the value of d_count – this is discussed in further detail below.

update_parent() is the function which calculates the new child and sibling 
relationships for a particular parent node in the file system. It works by scanning the 
dentry pool for nodes having the correct parent, constructing a child and sibling list as 
it goes. Then, in a second pass, the parent’s children field and its children’s sibling 
fields are updated accordingly. 

path_lookup() is the key supporting function. It is used to find a dentry 
corresponding to a particular path name as well as its parent in the path, and is the 
basis of all the system calls we modelled. If the function is successful, it returns the 
node and its parent, and has the side effect of increasing the d_count on the nodes 
returned (reflecting that they are being accessed). The reason why the logic of 
path_lookup() is so elaborate is the number of cases that need to be treated as distinct. 
– for example the treatment of root, which returns a null parent. There are also 
additional branches dealing with, for example, next item in path found/not found, end 
of path reached etc. Note also that one of the parameters to path_lookup() is a cwd13

that is prepended to the supplied path in the case where the first item in the path is not 
root. Although this facility was used at various points in the evolution of the model, it 
was not required by the final test harness.

The second and final stage of the transcription process was to incorporate the 
system call pesudocode into the model. For example, the Promela function for 
sys_creat() is given in appendix D.5. sys_creat() is probably the least complex of the 

                                                
13 I.e. current working directory.
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system calls. However, like path_lookup(), it is complicated by the number of distinct 
cases that need to be considered. It begins by using path_lookup() to retrieve the 
dentry of the file to be created (if it exists) as well as its parent (if it exists). If the 
parent exists it obtains its associated mutex. Otherwise it returns an error (with some 
special handling of the root case to redecrement its d_count i.e. dput() it).  There are 
several cases to consider if the parent exists:

- its child exists and is not a directory: in this case the d_count of parent and 
child are redecremented using path_release() and the mutex is released. Note 
that this is not treated as an error case because sys_creat() has been derived as 
a special case of sys_open().

- its child exists and is a directory: in this case the d_count of parent and child 
are redecremented using path_release() and the mutex is released. The error 
flag is set to indicate an error.

- the child does not exist: in this case the file is created by spin locking the 
dcache, extracting the last element of the path (the file name), allocating a 
dentry with the appropriate name and parent, incrementing the dentry’s 
d_count, locking all the inodes, allocating a new inode and associating it (in 
both directions) with the dentry, releasing the inode lock, updating the child 
and sibling links for the parent and its children, decrementing the parent and 
child’s d_count (using path_release()), unlocking the dcache and releasing the 
parent’s mutex (obtained earlier if the parent exists).

Note that sys_creat() also contains a couple of assertions. These are discussed in 
the next section.

7.3 Stylistic Considerations

There were several stylistic considerations (or design decisions) taken into 
account whilst constructing the SPIN model. The most important of these were the 
use of assertions and the design of the variable space.

The implementation (and therefore pseudocode) does not contain assertions – it 
would be unwise to include code that might halt the operating system. Instead a more 
defensive style of programming is employed. Properties tend to be checked and 
appropriate action taken in either case, where they hold and where they do not. This 
has two effects: firstly it makes the implementation robust against errors, and 
secondly, the generic nature of functions designed this way can simplify the 
algorithms. 

Good example of this style can be seen in the pseudocode for dget() and dput()
(see appendix C.1), where the value of d_count is checked before increment or 
decrement. This is to guard against a dentry becoming accidentally reassigned 
(respectively deassigned). However, the logic was also exploited at least once in the 
pseudocode of one system call, which called dput() in a situation where it would 
possibly have no effect. This simplified the algorithm slightly.

Conversely, when model-checking we are happy for the system to “halt” – it 
draws our attention to potential problems in the system being modelled (if any exist) 
and, more importantly, helps establish the validity of the model. For this reason we 
embraced the use of assertions in the SPIN model. 
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Assertions were added to the SPIN model during the transcription process from 
the pseudocode. This meant that the transcription was not merely a syntactic 
translation of the pseudocode in a number of ways:

- Assertions were added in situations where certain conditions were expected to 
hold. These included situations where the logic of the pseudocode indicated an 
assertion ought to hold, as well as some model-specific situations such as 
correct use of the interface to the core of the model

- Assertions were added to replace some “defensive style” if statements such as 
in dget() and dput().

- if statements were added in places to guard the use of functions where 
“defensive style” ifs had been replaced by assertions. E.g. where dput() was 
used.

Examples of first kind of assertion can be seen in the functions modelfinddentry()
(appendix D.3), update_parent() (appendix D.4) and path_lookup() (appendix D.4). 
modelfinddentry() contains core model interface assertions – that the dcache is locked 
and that if the parent is null the name is root (0). update_parent() contains a logical 
assertion that update_parent() is only called with a directory as an argument. 
path_lookup() contains the logical assertion that after the cwd has been prepended to 
the path the path must start with root (0). Examples of the second kind of assertion are 
in get_dentry() (appendix D.4) and sys_creat() (appendix D.5). get_dentry() contains 
an assertion which replaces the check in the pseudocode (see appendix C) that dget()
succeeded. sys_creat() contains two assertions checking that the allocation of a dentry 
and inode succeeded, replacing checks in the pseudocode – this is possible because of 
the way the model treats failure to allocate as successful termination. 

The model currently contains 50 or so such assertions amounting to approximately 
3% of the model.

The other important stylistic consideration was the design of the variable space of 
the model. SPIN has two kinds of variable, global and local to a process. Additionally, 
global variables may be hidden, when they only appear in d_steps so that they are 
elided in the state vector (reducing the memory requirements for model-checking). 
There are no local variables at the “function call” level. This is because function calls 
are modelled by “inline” constructs, which essentially bind interface variables to their 
point of reference and replace that point of reference with a suitably modified version 
of the inline text. Because of SPIN’s restrictions, and the importance of keeping the 
size of the state-vector to a minimum, the design of the variables space (what they are, 
how they’re used) is very important. The following describes our approach. Note that 
it should be possible to optimise the use of variables further.

There are four kinds of variable in the model:

- Global: these are global SPIN variables and are in scope everywhere in the 
model – for example dep (inp), the dentry pool (respectively inode pool) from 
which nodes are allocated.

- Scratch variables: these are hidden global SPIN variables only used within
d_step code and therefore not appearing as part of the state-vector. These are 
used in various low-level functions (such as in path manipulation) and 
functions supporting the test harness.
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- Local inline parameters: these are SPIN local-to-process variables used locally 
within inline functions. They are not declared locally (as this is not permitted), 
but supplied as parameters to each inline function.

- Test harness variables: these are local-to-process variables used in the body of 
the test harness.

The local inline parameters required the most thought. A pool of local variables 
was declared as part of the process body (the test harness). Interface variables to the 
inline functions were partitioned into levels according to the usage hierarchy e.g. 
lvplus1_1 corresponded to a local variable of size one for use in the next level, and 
“passed” from function to subsidiary function. Variables that had clear use e.g. 
plulv_4_1, for use in the path_lookup() function were named mnemonically. 
Designing the variable space in this way allowed a weak form of encapsulation of 
local variables, centralised control of which variables were used where to the process 
body, and meant that variables could be reused from function to function minimising 
the number of variables required. It also easily allows inlines to be used in more than 
one concurrent process over distinct local variables.

7.4 Consistency Properties and Concurrency

So far, due mainly to time constraints, only one consistency property is checked by 
the model. This concerns the value of the d_count reference count, which ought to 
have a value of 1 for allocated dentries when the system is in a stable state (between 
system calls). The property is stipulated as an assertion in a monitor function that 
checks the state of the dentry pool (and prints the information during simulation) in 
between system calls: printdentries().

The fact that more consistency properties have not been included is unfortunate, 
but is tempered by the inclusion of a great many assertions, which was not anticipated 
at the outset. Also, as mentioned above (section 5), the implementation details 
brought into question the use of certain consistency properties as a mechanism for 
checking correctness. Thus, a review of this aspect is needed before more consistency 
properties are included.

The ability to perform checks on d_count is in part due to the absence of 
concurrency in the model, which simplified the identification of stable points in the 
system’s evolution (when no file system operations were in progress). Although 
concurrency was a key aim, and the model was designed with concurrency in mind, a 
concurrent test harness has not yet been produced for the SPIN model. This was due 
to setbacks in the modelling phase and resource constraints.

7.5 The Test Harness

The test harness is the part of the model that “drives” the system calls. Its purpose 
is to initialise the file system and then run the system calls in a way that explores all 
its possible states. The test-harness has two roles:

- Simulation, which produces textual output and allows the user to interact with 
the model. User interactions usually take the form of resolving (apparent) non-
determinism in the model, letting the user guide the model into interesting 
states and inspect the model’s behaviour in those states. It is used to validate 
the model.
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- Verification, which produces no textual output (other than the results of the 
verification) and does not allow user interaction. It explores all reachable 
states and checks that nothing undesirable happens along the way (such as an 
assertion being violated).

The file system test harness was designed with the two roles in mind. However, 
simulation was hampered by the large number of interactions needed to guide the 
model into some particular state – navigation became extremely difficult14. The 
solution was to implement user interaction directly in the model using the stdin
channel (keyboard read). A #define15 was used to switch-out the Promela code 
relating to stdin (the keyboard reads and use of the results in branch conditions) for 
verification purposes. This can be seen in the test harness body shown in appendix 
D.6)

The test harness works by implementing a “mock” cd function. This is not a cd
function relating to the kernel (altering cwd and reference counts such as d_count), 
but instead a simple way of manipulating the path argument(s) supplied to the system 
calls. It allows the user to change the source path (supplied to every system call) and 
destination path (supplied to the rename call) each time, by returning to root, moving 
down a specified directory, moving up a directory, or staying in the same place (skip). 
Two functions, cd() and choose_id(), supporting the manipulation of paths are shown 
in Appendix D.7, along with one of the monitoring functions printdentries(). The 
latter contains the d_count assertion (consistency property) mentioned above.

Once the source (and destination) path(s) have been set, the user may choose 
which system call to invoke and the model reports success or failure. Finally, they can 
choose whether to inspect the current state of the system (using the monitoring 
functions such as printdentries()). When the –D myverif option is set for verification 
purposes all these choices are made on a purely non-deterministic basis.

7.6 Preliminary Results

The simulation phase consisted of a sequence of random tests (to increase 
confidence in the validity of the each system call as it was added), followed by a 
sequence of structured tests (once all calls had been integrated into the model). 
Approximately 100 tests were performed (and reperformed) during the structured 
testing phase. They attempted to cover all key scenarios (both successful and 
unsuccessful) for a maximum width of 2 nodes, down to depth of 3 nodes. Both types 
of testing produced deviations from the expected behaviour. Occasionally these 
deviations were due to errors in the model (e.g. caused by inadequate protection of 
assertions) and had no bearing on the validity of the pseudocode. However, in several 
cases the errors were directly traceable into the pseudocode and implied that the 
pseudocode or implementation itself were problematic. In each case, where the 
validity of the pseudocode was called into question, the abstraction process was 
double checked and found to be in error. The pseudocode was revised accordingly.

Once all of the structured tests were found to succeed as expected, the verification 
phase was performed, which involved running the verifier on models with various 
maximum file system settings (NoofNodes). Each verification was run a 1.9 GHz 
machine, on top of cygwin, running on windows XP. The maximum memory 
                                                
14 The main reason for this was SPIN’s insistence on prompting the user to resolve non-determinism 
even when no actual non-determinism existed, i.e. in most situations where the Promela code branched.
15 Normally supplied as a –D option to the verifier.
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available was set to 950Mb (in the context of 1Gb RAM), other SPIN options 
included: exhaustive search (rather than bit hash), state vector compression, partial 
order reduction16. Preliminary results are as follows: The model-checker succeeded 
checking at a level of 3 and 4 nodes – no further errors were found. The model-
checker quickly ran out of memory for 5 nodes. Specific results for 4 nodes are as
follows:

Approx Time: 2 minutes
Approx Memory Used: 700Mb

State Vector: 356 byte
Compressed State Vector: 39 byte (+12 overhead)

Compression Ratio: 13% 

In addition, several parts of the model were reported as unreachable. On 
inspection, this appeared to be due to the branches associated with concurrent 
behaviour, which were never taken due to the sequential nature of the test harness. 
Attempts were made to analyse 5 and 6 node systems using the bit hashing (non-
exhaustive) option. Results were obtained for 5 nodes, with a state size estimate of 
7500, but these were of little significance (hash factor 8-9). At 6 nodes, we were 
unable to achieve any results even for bit-hashing – verification runs did not succeed 
due to memory problems.

7.7 Retrospective Comments

One of the most important contributions of the SPIN modelling was the model 
testing activities. The provided important support for the code abstraction process, 
trapping many errors prior to the verification runs. Due to the scheduling of the work, 
this turned out to be to the benefit of the SMART modelling phase, which was based 
on later versions of the pseudocode. This in turn meant that the SMART model was 
able to concentrate more on validating the behaviours particular to concurrency (see
next section).

The preliminary verification results were not so useful. The verifier only ran 
successfully up to 4 nodes, and it was unsurprising that no errors were found given 
that the testing phase has already explored most (if not all) distinct scenarios relating 
to a 4 node file system. The verification problems were caused principally by memory 
shortage, which highlights the significance of minimising the complexity of the 
model. To this end, future work will involve optimising the variable space, test 
harness and SPIN options, as well as running the verifier on a machine with more 
available memory. 

Other important items of future work include provision for multiple processes, and 
a review – and incorporation – of consistency properties. Adding processes and 
consistency properties will place more of a burden on the memory requirements for 
verification. However, it is hoped that the use of partial order reduction techniques, 
in the presence of concurrency, will alleviate some of the overheads.

                                                
16 However, the model contained no concurrency so this probably had no effect.
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8. The SMART Model

The translation of the pseudocode into SMART had to comply not only with the 
specifics of the SMART modelling language (Petri nets) but also with other 
restrictions imposed by the need to apply the most advanced symbolic model 
checking techniques, which are only available under additional constraints.  One such 
constraint is the Kronecker consistency requirement which, informally, demands that 
Petri net constructs that are functionally dependent on each other (Petri net places) be 
grouped in the same partitioning subnet.

SMART is designed as a tool for logical and stochastic analysis of concurrent 
systems. Modelling software is not the main target of this language. For this reason, 
for the translation of the file system pseudocode, we had to manually introduce 
program counters into the Petri net. Other limitations of the SMART language (no 
data structures, no recursion, no dynamic memory allocation) made the task more 
challenging, but did not ultimately hamper the model development.

8.1 Related Work Specific to SMART

From our experience, the VFS model ranks with the most complex systems ever 
modelled in SMART. This perspective is not reflected solely by the shear size of the 
model (over 2600 lines of SMART code), but also by the inherent complexity of the 
system itself. For comparison, two other similar industrial-size applications modelled 
in SMART are:

- NASA's Runway Safety Monitor [SC07]: a protocol for detecting incidents on 
airport runways. The model is parameterised by the number of aircraft (called 
targets) that are monitored, each aircraft being represented by its 3-D (discretised)  
coordinates and flight status. The SMART file is 1850 lines long. The state-space 
exploration takes under 5 minutes for the smallest relevant set of parameters (1 
target, 3x3x3 position grid).

- NASA's clock synchronization [Min93] and self-stabilization protocols [Mal06] 
for the SPIDER fault-tolerant architecture. The protocol is parameterised by the 
number of nodes, clock wrap-around period, and other protocol related data. The 
SMART file size is 1190 lines. The protocol can be instantiated under various 
fault assumptions, ranging from benign to symmetric and Byzantine. The smallest 
relevant setting is for 4 nodes (3 good nodes and 1 faulty). The tool is not able to 
build the state-space for the most complex setting (Byzantine fault, fully 
randomised initial state) before running out of memory (on a 16GB machine), but 
is still able to analyse partial configurations.

8.2 Model Components

The process of extracting the model variables was similar to that for SPIN. The 
abstract model has is parameterised by:

- The (maximum) number of dentries (ND)
- The (maximum) number of inodes (NI)
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- The number of concurrent processes (NP) making calls to the file-system (this 
can also be viewed a parameter not of the file system itself, but of the test 
harness for the SMART model);

In principle, the model variables are represented as Petri net places, and instructions 
are represented as Petri net transitions. Since the model is parameterised, the fields of 
the dentry and inode data structures are represented as arrays.

  for (int i in {1..nd}) {
    place
      d_allocated[i],   /* is allocated? flag */
      d_parent[i],      /* id of parent: 0=n/a, or 1..ND */
      d_count[i],       /* reference count */
      d_lock[i],        /* not used */
      d_inode[i],       /* id of corresponding inode: 0=n/a, or 1..NI */
      d_subdirs[i];     /* number of subdirectories */
  ...
  }

This is because the SMART modelling language does not support records.  The 
SMART code is nevertheless quite readable, as the i-th dentry is simply represented 
as the collection of all the i-th elements in the above arrays.

The convention adopted for locks and mutexes is to have a positive value 
representing “available” and zero for “not-available”. Hence, acquiring a lock/mutex 
removes a token form the Petri net place storing the lock value, while releasing a lock 
adds a token back to the place.

Additionally, the model has to instrument a program counter (instruction pointer) 
for executing the four file operations (create and delete file, make and remove 
directory). There is choice of modelling the program counter as an integer variable 
(hence a Petri net place in our model) or, equivalently, as an array of Boolean 
variables. We opted for the latter approach.

8.3 Modelling Restrictions in SMART

Path Names

We had to circumvent other limitations imposed by the simplicity of the SMART 
modelling language. This lack of sophistication is a benefit in many circumstances, 
but in the case of software, the modeller is forced to get creative. One such situation is 
posed by the need to represent the tree structure of the file system. Lists are not 
supported in SMART, therefore we had to adopt an abstraction mechanism that does 
not impair the ability to perform a logical analysis of the original (not abstracted) 
system.

From the logical point of view, operations with fully qualified filenames 
(path+filename) only test for the path name being identical or not with an existing 
one. As long as each type of operation is represented in our model, the abstraction is 
valid and offers full coverage all possible relevant situations.

For example, in the abstract model, we represent each fully qualified pathname 
with an integer. Initially, the value 1 is reserved for the root (‘/’) and value 2 for the 
folder ‘/lost+found’ (created at mount time).  Any (distinct) file/folder that is created 
subsequently is assigned an abstract index. The call to create a dentry is of the form: 
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create(Dentry_idx file_id, Dentry_idx int parent_id), where Dentry_Idx is the type 
[1..ND] (ND = size of dentry array)

In the initial state illustrated above (‘/’ and ‘/lost+found’), the next legal create 
calls can be only create(i, j), with i in [3..ND] and j in [1..2]

- create(i,1), with i>2, corresponds to adding a child to '/' with any other name 
except 'lost+found'

- create(2,1) represents the attempt to create '/lost+found' again; which should 
behave accordingly, i.e. does not create a new dentry

- create(1,1) represents the attempt to create the root again; should have similar 
outcome: denied

Similarly for the calls create(i,2) (create children of '/lost+found'):

- create(1,2) is illegal
- create(2,2) is illegal
- create(i,2) with i>2 is valid

Besides,

- create(i,j) with j>2 represents an attempt to create a file in a non-existent path

Following a successful create(i,j) (say we requested create(4,1), which corresponds to 
sys_creat(string s), s different than '/' or '/lost+found'), we have a new abstract string 
present in the system. For clarity, let's assume that '/a' was created. Therefore, the 
index 4 represents the new abstraction, given by the equivalence relation: idx==4 iff 
string=='/a'. The new system state is: 1='/' 2='/lost+found' 4='/a'.

The next valid create request is of the type create(i,j) with i not in {1,2,4} and j in 
{1,2,4}. For example, to create file 'b' as a child of root, we might call:

create(7,1) // – 7 may be replaced by any integer other than 1,2,4 but to create 'b' as 
child of '/a' we would call create(7,4)

On the other hand, trying to sys_creat('/a') again is still represented by create(4,1), 
while trying to sys_creat 'a' anywhere but in the root is a valid call, which could be

- create(7,4) // if trying to sys_creat('/a/a')

or

- create(7,2) // for sys_create('/lost+found/a')

If '/a' is removed, then index 4 becomes available for any other distinct string not 
already in the system. Creating a file to take its place, means we have introduced a 
new abstraction function: idx==4 iff filename==<the_new_string>
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8.4.Illustrative Code Snippets

Below is a code excerpt, illustrating a particular instruction (step number 8) in the 
pseudo-code of the create() routine, which tests for the file argument passed to the
routine to be allocated and not be a directory.  There are two transitions, one for the 
“then” and one for the “else” branch, respectively.  Depending on whether the guard 
is satisfied or not, the instruction pointer is moved either to line 9 or line 12 of the 
code. No other state changes are performed by this step.

    /* ---------- Create step 8 ---------- */
    // --- if (file.is_allocated && is_directory(file))
    for (int i in {1..nd}) {
        trans
          t_create_step8_then[p][i],
          t_create_step8_else[p][i];
        arcs(
          p_create_line8[p]:t_create_step8_then[p][i],
            t_create_step8_then[p][i]:p_create_line9[p],
          p_create_line8[p]:t_create_step8_else[p][i],
            t_create_step8_else[p][i]:p_create_line12[p]
        );
        guard(
          t_create_step8_then[p][i]:
           tk(p_file[p])==i &   tk(d_allocated[i])>0 & tk(d_subdirs[i])>0,
          t_create_step8_else[p][i]:
           tk(p_file[p])==i & !(tk(d_allocated[i])>0 & tk(d_subdirs[i])>0)
        );
    }

Another example, that does transform the state of the system, is illustrated below. 
Step 13 in the create() routine allocates dentry #i as a child of d_entry #j. To that 
extent, it sets the d_allocated[i], d_count[i] and d_lock[i] to 1, and the value of 
d_parent[i] to j. The transition guard enforces that d_entry #i should not be already 
allocated. After setting these values, the instruction pointer is moved to line 14 in the 
create() procedure.

    /* ---------- Create step 13 ---------- */
    // --- allocate_dentry
    for (int i in {1..nd}) {
      for (int j in {1..nd}) {
        trans
          t_create_step13[p][i][j];
        arcs(
          p_create_line13[p]:t_create_step13[p][i][j],
            t_create_step13[p][i][j]:p_create_line14[p],
            d_allocated[i]:t_create_step13[p][i][j]:tk(d_allocated[i]),
            t_create_step13[p][i][j]:d_allocated[i],
            d_count[i]:t_create_step13[p][i][j]:tk(d_count[i]),
            t_create_step13[p][i][j]:d_count[i],
            d_lock[i]:t_create_step13[p][i][j]:tk(d_lock[i]),
            t_create_step13[p][i][j]:d_lock[i],
            d_parent[i]:t_create_step13[p][i][j]:tk(d_parent[i]),
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            t_create_step13[p][i][j]:d_parent[i]:j
        );
        guard(
          t_create_step13[p][i][j]:
           tk(p_file[p])==i & tk(p_parent[p])==j & tk(d_allocated[i])==0
        );
      }
    }

The entire SMART file is too large to be listed here. For reference, we have 
included the portion of the file that encodes the create() operation in Appendix E.  
The full model is available on-line17.

8.5. Results for SMART

At this stage, the main purpose of the analysis is to determine the tool's ability to 
handle the large state-space size of the parameterised model. SMART was able to 
complete the reachable space for reasonable values of the parameters, not only for the 
trivial cases.

Below is a summary of the state-space generation runs for 1 (table 1) and 2 (table 2) 
processes.

8.6 Preliminary Results for Parallelised SMART

In addition to analysing the file system model using SMART, verification was also 
performed using a prototype [ELS07] which parallelises the saturation algorithms 
used in SMART. The prototype, written in C using the POSIX Pthreads library 
[LB98], executes in parallel on a multi-core PC (shared-memory architecture), and 
can be directed to use 1 (sequential), 2, 3 or 4 cores. 

Preliminary verification results are given in table 3. Note that no attempts have yet 
been made to optimise the file system model for efficient parallel analysis.

The results for the file system case study fit with those of a stereotypical “low 
parallelism” model. For the parallel FIFO algorithm, only a small (approximately 
20%) run-time overhead is introduced on the first core. However, only a small 
(approximately 5%) improvement is achieved on the second core with diminishing 
improvements on the third and fourth core. This means that the parallel algorithm is 
unable to improve over the sequential algorithm on four cores, demonstrating an 
approximate 10% slowdown. The memory overhead for the parallel algorithm is 
slightly less than 2x, which is a typical memory increase due to the introduction of 
upward arcs into the MDD structure, and Pthread mutex locks.

                                                
17 http://www.cs.york.ac.uk/~andyg/filesystem/smartmodel.sm
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# params 
##D #I  

# states     time(s)  mem(KB)

  2     2                 283 0.54      291
  2     3                       283 0.59      302
  2     4                 283 0.65      314
  2     5                 283 0.70      325
  2     6                 283 0.77     337
  2     7       283 0.82      348
  2     8 283  0.87      360

  3     2          1086          1.11      802
  3     3             2660   2.03     1948
  3     4              2660  2.28     2035
  3     5             2660   2.54     2121
  3     6             2660   2.84     2208
  3     7               2660 3.07     2294
  3     8                2660 3.34     2381
  4     2             3339   2.05     1547
  4     3               20395 8.13     8705
  4     4            80461  13.42    16776
  4     5             80461 15.20    17501
  4     6            80461  17.08    18227
  4     7             80461 18.94    18952
  4     8           80461   20.92    19675
  5     2                9406 3.75     2786
  5     3           110359  20.75    20532
  5     4           951538  52.74    75189
  5     5            5604562 76.92   184571
  5     6           5604562 85.09   187811
  5     7            5604562 92.80   190853
  5     8          5604562 101.29   193977

# params 
##D #I  

# states     time(s)  mem(KB)

  6     2              25163 6.56     4537
  6     3           480011  40.97    39674
  6     4           6827399 126.21   212000
  6     5          87900191 382.34  1430972
  6     6                0   0.00        0
  6     7                   0 0.00        0
  6     8                 0  0.00        0

  7     2            68874  11.24     7074
  7     3            1814603 79.24    71333
  7     4          37223248 255.54   502398
  7     5              0     0.00        0
  7     6              0     0.00        0
  7     7              0     0.00        0
  7     8              0     0.00        0
  8     2          162523 19.37    10446
  8     3           6228787 145.54   116699
  8     4        170672245 507.87  1059037
  8     5               0    0.00        0
  8     6               0    0.00        0
  8     7               0    0.00        0
  8     8               0    0.00        0

Table 1. State-space generation results for one process

# params 
##D #I  

# states     time(s)  mem(KB)

  2     2               18934 3.43    4331
  2     3               18934 4.02   4488
  3     2             485587 93.28   78968
  3     3          2992118 1139.61  784659

Table 2. State-space generation results for two processes

(NB: The zeroes mean SMART ran out of 4GB of memory).



36

Run-time (s) (Cores) Relative Memory (Cores)
Type 1 2 3 4 1 2 3 4

D=2 I=2 P=1 Sequential: 0.42(s) 65542(b)
fifo 0.50 0.48 0.47 0.47 1.74 1.75 1.78 1.78

chain 0.52 0.51 0.51 0.51 1.77 1.75 1.75 1.75
D=3 I=2 P=1 Sequential: 1.69(s) 195300(b)

fifo 1.88 1.82 1.79 1.78 1.76 1.77 1.78 1.79
chain 1.93 1.92 1.91 1.91 1.78 1.74 1.73 1.73

D=4 I=2 P=1 Sequential: 3.32(s) 295112(b)
fifo 3.80 3.67 3.58 3.53 1.77 1.80 1.82 1.82

chain 3.94 3.90 3.90 3.88 1.78 1.76 1.76 1.75
D=3 I=3 P=1 Sequential: 11.03(s) 887170(b)

fifo 13.34 13.02 12.88 12.64 1.79 1.84 1.85 1.85
chain 13.57 13.54 13.51 13.50 1.80 1.80 1.80 1.79

D=4 I=3 P=1 Sequential: 151.22(s) 4957529(b)
fifo 179.69 168.21 162.10 160.49 1.83 1.88 1.88 1.88

chain 191.20 189.20 188.79 188.74 1.82 1.83 1.82 1.82

Table 3. Run-time and memory results for the file system model.
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9. Related Work

While techniques for verifying the correct use of file system interfaces represented 
as finite state machines are presented in [DLS02] and [DF01], work on verifying 
properties for file system implementations as shown in this report is quite rare.

In [AZKR04] a correctness proof for a formalised basic file system implementation 
that uses standard file system data structures such as inodes and fixed-sized disk 
blocks is presented. It considers data structures which are also covered in our work. 
By having a notion of disk blocks, it also deals with their respective on-disk 
representation. In the paper, the implementation is proved correct by establishing a 
simulation relation between the specification of the file system, formalised as a map 
from file names to sequences of bytes and its implementation using the Athena proof 
system. The work done by Arkoudas et al. differs from ours as it does not deal with 
the verification of a “real” file system implementation and concurrency related issues. 
Hence, it does not involve the process of abstracting a model from a given 
implementation and its environment.

Two publications dealing with the verification of actual file system 
implementations are [YTME04] and [YST+06].

In [YTME04], model checking is used in systematic testing to find errors in the 
specific file system implementations EXT3, JFS and ReiserFS. Their verification 
system consists of an explicit state model checker running the Linux kernel, a file 
system test driver, a permutation checker which verifies that a file system can recover 
no matter in what order buffer cache contents are written to disk, and a recovery 
checker using the fsck file system recovery tool. The system starts with an initial, 
empty file system and recursively generates possible successive states by executing 
system calls affecting the file system. After each step the system is interrupted and 
fsck is used in order to check whether the file system under test can recover to a valid 
state.

[YST+06] uses a similar approach combined with symbolic execution in order to 
generate test cases that can be used to crash or exploit a file system implementation.
Both approaches are similar to our work in the sense that they are striving to expose 
problems in actual file system implementations that can lead to serious 
inconsistencies or security exploits. However, [YTME04] and [YST+06] are based on 
runtime verification techniques that cannot exhaustively explore the state space of the 
implementation. A big advantage over our work is that these techniques do not require 
the tedious and error prone manual abstraction of a model from the implementation, 
which was required in our case.

Verification approaches that mechanically analyse the source code of operating 
system components and that can be used in order to automatically and exhaustively 
identify property violations are presented in [Hen02], [CC+04a] and [BR01]. In 
theory these tools are able to prove a file system implementation to be free of 
deadlock situations due to improper use of locking mechanisms. However, as shown 
in [ML06], the tools also require tedious manual preprocessing of the original source 
in order to be able to parse and model check it. According to the experience of the
authors, the amount of man-hours required to prepare the VFS implementation for 
being verified with BLAST up to the same extent as shown in this report, would be 
equivalent to our approach since similar manual abstractions would be required.
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10. Conclusions

This report has outlined our experiences model checking part of a Linux file 
system. In particular we have described the aims of the project, the domain, the scope 
and methodology followed, the abstraction of the data structures used by the file 
system, the abstraction of the Linux code and the construction of two models in SPIN 
and SMART. These experiences constitute intermediate results in the sense that 
additional work is now ongoing, with the aim of maximizing the benefits of the study 
(and return on investment).

Successes

Several aspects of the study can be considered as successes. The abstraction of the 
data structures, on the whole, worked well – although there were minor difficulties 
associated with the decision to use d_count as a surrogate for i_count. Both modelling 
phases were also largely straightforward, and each can be considered a success in its 
own way. The SPIN modelling phase was particularly useful, through the use of 
assertions and structured testing, for validating the sequential aspects of the 
pseudocode – although the results for verification were hampered by problems with 
memory requirements. On the other hand the SMART model, which was able to 
capitalise on SPIN’s analysis of the pseudocode, was able to concentrate on validating 
the concurrent behaviour of the pseudocode. The verification results for SMART were 
impressive, but limited to features such as deadlock freedom.

Limitations and difficulties

Despite the independent success of the modelling phases there was a key 
drawback. During the design and construction of the models there was some drift in 
the focus of each, and this meant that comparisons between models were difficult to 
infer. In particular: 

- restrictions in the SMART modelling language constrained the way 
path_lookup() could be modelled, resulting in an abstracted algorithm and less 
faithful (cf the pseudocode) interface to the system calls. Conversely, the SPIN 
model adhered closely to the pseudocode.

-  the SPIN model was sequential and deallocated nodes as soon as they were 
unassigned, which was unfaithful with respect to the pseudocode. On the other 
hand, the SMART model allowed multi-process concurrency, including 
concurrent a clean_up() operation to deallocate unassigned nodes. The 
difference was attributable in essence to time lost in testing (for SPIN), when 
pseudocode problems were found and resolved.

-  the SPIN model contained many assertions, including one consistency property, 
whilst the SMART model focussed on concurrency issues, such as deadlock.

- the SPIN model incorporated the sys_rename() system call, whereas the 
SMART model elected to prioritise progress on the other four system calls.

Another significant drawback concerned the SPIN verification results, which were 
not very useful. Realistically, a 4-node verification in a sequential model does not tell 
us very much about the correctness of the pseudocode, let alone the implementation.
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By far the most severe difficulties concerned the abstraction of the LNUX code, 
which was the hardest part of the entire exercise. The manual nature of the abstraction 
and the problems in validating the pseudocode make any scientific conclusions about 
the correctness of the implementation difficult to infer. Having a faithful abstraction 
was key to the aim of adding to the existing confidence in the Linux implementation. 
We believe further research is needed in this area.

Better Tools for Abstraction.

Abstracting a faithful model from the VFS implementation turned out to be one of 
the most difficult parts of this research project. However, it can also be considered as 
one of the most common tasks to be done in post-hoc software verification using 
symbolic model checking or theorem proving. Hence we suggest, that future research 
should explore this area, enabling the development of automated tools mechanising 
this process. An ideal tool for the purpose of model abstraction would require two 
inputs. Firstly the program under consideration, secondly a specification stating 
precisely which parts of the implementation’s data structures and functions, or which 
verification properties a user is interested in. The tool would than be able to 
automatically abstract a minimal model of the system in respect of the specification, 
dynamic memory allocation and concurrency issues. Actually, tools such as BLAST 
[Hen02] are coming close to this goal by using the CounterExample Guided 
Abstraction Refinement (CEGAR, cf. [CC+04b]) paradigm. However, to the authors’ 
knowledge all of them have restrictions regarding the input language, memory 
allocation and concurrency. Especially in the context of the verification of operating 
system components, restrictions to the programming language accepted by the tool 
have the highest impact. That is because these software components are usually not 
written in plain ANSI-C but contain architecture and compiler specific code sections 
as well as inline assembly. Hence, research on abstracting models from lower-level 
intermediate code or even object code might be worthwhile.

Future work

The most immediate source of future work concerns obtaining comparisons between 
the SPIN and SMART models. Presently, the two models are so dissimilar that 
comparisons are meaningless. In order to bring them into a comparable state the 
following work will be undertaken, primarily on the SPIN model:

- the SPIN model’s system call interface will be brought into line with that of 
the SMART model. The path_lookup() function will be abstracted 
accordingly.

- Multi-process concurrency will be added to the SPIN model, including a 
concurrent clean_up() operation.

- The assertions will be removed (once shown to hold). Alternatively, assertions 
might be added to the SMART model as “error” transitions.

- Verification of the two models will be executed in comparable settings (i.e. the 
same machine, with as much memory as possible).
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Other areas of future work may include:

- optimisation of the SPIN data space, test harness etc. for increased verification 
coverage

- a review of the data structures included in the abstraction
- a review and introduction of additional consistency properties, in line with our 

original expectations

Potentially, there is still much to do to add to this study. For one, we have not yet 
iterated as per Figure 3, with the aim of adding functionality (e.g. mounting, hard 
links) and moving the models closer to the media representation (e.g. modelling the 
behaviour of EXT2). The preliminary results presented herein represent a first step. 
We hope to continue the work for some time to come.
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Appendices

Appendix A – Example of struct Definition 

The following is part of the dcache.h file describing the dentry structure.

/*
 * linux/include/linux/dcache.h
 *
 * Dirent cache data structures
 *
 * (C) Copyright 1997 Thomas Schoebel-Theuer,
 * with heavy changes by Linus Torvalds
 */

struct dentry {
atomic_t d_count;
unsigned int d_flags; /* protected by d_lock */
spinlock_t d_lock; /* per dentry lock */
struct inode *d_inode; /* Where the name belongs to - NULL is

 * negative */
/*
 * The next three fields are touched by __d_lookup.  Place them here
 * so they all fit in a cache line.
 */
struct hlist_node d_hash; /* lookup hash list */
struct dentry *d_parent; /* parent directory */
struct qstr d_name;

struct list_head d_lru; /* LRU list */
/*
 * d_child and d_rcu can share memory
 */
union {

struct list_head d_child; /* child of parent list */
struct rcu_head d_rcu;

} d_u;
struct list_head d_subdirs; /* our children */
struct list_head d_alias; /* inode alias list */
unsigned long d_time; /* used by d_revalidate */
struct dentry_operations *d_op;
struct super_block *d_sb; /* The root of the dentry tree */
void *d_fsdata; /* fs-specific data */

#ifdef CONFIG_PROFILING
struct dcookie_struct *d_cookie; /* cookie, if any */

#endif
int d_mounted;
unsigned char d_iname[DNAME_INLINE_LEN_MIN]; /* small names */

};
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Appendix B – Data Abstraction

B.1 Identifying Fields of Interest

Superblock

Attribute Type Description Relevance Rationale
s_list struct list_head Double link to other 

filesystems (superblocks)
Low We’ll only be using one file system 

s_dev dev_t Device supporting filesystem Low We don’t care about the device
s_blocksize unsigned long Size of file system Low We can fix this in our model
s_blocksize_bit
s

unsigned char Size in bits of address space. Low We can fix this in our model

s_dirt unsigned char Superblock has changed 
since last write

Medium May feature later when we look at 
device

s_maxbytes unsigned long 
long

Maximum File Size Low Not interested in large files

s_type struct 
file_system_type 
*

Type of FS (e.g. EXT2) Low Only interested in one file sys type

s_op struct 
super_operations 
*

Pointer to ops structure (e.g. 
for EXT2)

Low Only interested in one set of ops, 
characterised by our model

s_dq_op struct 
duot_operations *

Disk quota ops Low Not interested in DQ

s_qcop struct 
quotactl_ops *

Disk quota control ops Low Not interested in DQ

s_export_op struct 
export_operations 
*

Export ops Low NFS only

s_flags unsigned long E.g. read only FS E.g. other 
inode flags

Low Some flags might be important to 
correctness or fairness?
Flags restrict full behaviour so can 
ignore (allow full functionality)

s_magic unsigned long Device ID number Low Not interested in device
s_root struct dentry * Dentry for root of FS High Important for correctness or 

consistency
s_umount struct 

rw_semaphore
Reader/Writer semaphore 
(locks writes, permits reads) 
for use in unmounting

High Will be important when modelling 
mount/unmount behaviour

s_lock struct mutex Superblock lock. Mutex 
structure. Modelling in 
previous versions as no of 
processes waiting and 
waiting queue

High Correctness

s_count int Number of dentries referring 
to superblock

Medium Consistency

s_syncing int Set during device 
synchronisation (writing 
changes)

Low Not modelling device 
synchronisation yet.

s_need_synch_
fs

int Set when synchronisation 
required (similar to dirt)

Low Not modelling device 
synchronisation yet.

s_active atomic_t Device Active? Low Not modelling device yet.
s_security void * Used in device security? Low Not modelling device or security 

properties
s_xattr struct 

xattr_handler **
Concerning extended 
permissions

Low Not modelling extended permissions

s_inodes struct list_head List of all Inodes Medium Ignore for now – can get to via Root
s_dirty struct list_head List of dirty inodes Medium Consistency. But not modelling 

device synch yet.
s_io struct list_head “Parked for writeback” list Low Ignoring
s_anon struct hlist_head Anonymous Dentries list Low Used by NFS
s_files struct list_head List of open files Medium Not modelling file info initially –

may need abstract model of this 
eventually

s_bdev struct 
block_device *

Device (backup?) Low Ignoring

s_instances struct list_head List of file system 
superblocks of same type

Low Ignoring

s_quota_info struct quota_info Quota data Low No modelling quotas
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s_frozen int Error handling – filesystem 
frozen

Low Not modelling device/device failures

s_wait_unfroze
n

wait_queue_head_
t

Error handling – processes 
waiting for filesystem to be 
unfrozen

Low Not modelling device/device failures

s_id char _[32] Name for information 
purposes

Low Not important

s_fs_info void * Filesystem specific data Low For EXT2 this looks device specific
s_vfs_rename_
mutex

struct mutex Mutex used when renaming 
directories.
Used by VFS.

Low Not used by EXT2

s_time_gran u32 Time granularity for 
atime/ctime etc.

Low Not important to model. Hardwired.

Dentry

Attribute Type Description Relevance Rationale
d_count atomic_t Reference count - no of 

processes accessing dentry
High Consistency and correctness

d_flags unsigned int Used by specific file sys 
implementations

Low Never used by EXT2

d_lock spinlock_t Spinlock (used to protect 
dentry)

High Correctness

d_inode struct inode * Pointer to Inode related to 
this dentry

High Consistency/Correctness

d_hash struct hlist_node Links to other entries in hash 
bucket

Low Not modelling dcache

d_parent struct dentry * Parent dentry or reflexive if 
root

High Consistency

d_name struct qstr Name and hash value Low Use d_iname for name, simple 
hash

d_lru struct list_head Used to link unreferenced 
dentries (for mem 
management) See Note.

Medium May cause problems. See note.

d_child struct list_head Used to link sibling Dentries 
[union with d_rcu]

High Consistency

d_rcu struct rcu_head Queue of pending functions 
to be carried out on inode 
[union with d_child]

High Correctness (but may have to limit 
queue size)

d_subdirs struct list_head Used to Link Child Dentries High Consistency
d_alias struct list_head Used to Link Dentries 

pointing to same inode (hard 
links)

Low Ignoring Hard links for now

d_time unsigned long Used by FS implementations Low Used for shared file systems, 
therefore ignore for now

d_op struct 
dentry_operations *

Pointer to operations on 
Dentries

Low Captured by model

d_sb struct super_block * Pointer to superblock Low There will only be one initially
d_fsdata void * Used by FS implementations Low Not used by EXT2
d_cookie struct 

dcookie_struct
Used in kernel analyses Low Not part of core implementation

d_mounted int Records whether Dentry 
carries a mount.

Low Will only be mounting single file 
system, therefore no need for this.

d_iname unsigned char _[16] First 16 chars of name High Here’s where we store our name.

Inode

Attribute Type Description Relevance Rationale
i_hash struct hlist_node Used to link inodes in this 

hash bucket
Low No hashing needed on inodes

i_list struct list_head Links inodes in same state 
(used, unused,dirty) for entire 
FS 

Medium May be able to generate on-the-
fly if important

i_sb_list struct list_head Used to link all Inodes (for 
superblock) 

Low Ignore (equivalents possible 
without allocating dataspace)

i_dentry struct list_head List of dentries referring to 
this inode

High Consistency

i_ino unsigned long Inode identifier Low Inode identified by its “address” 
in pool
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i_count atomic_t Number of processes Medium Consistency – but can ignore for 
now (no links, single mount)

i_mode umode_t File mode e.g permissions Low Only using one type of file
i_nlink unsigned int Number of hard links Low Not modelling links yet
i_uid/ i_gid uid_t/gid_t User/group ids Low Unimportant
i_rdev dev_t Device Low Device (for mouse etc.)
i_size loff_t File size Low Not modelling this (yet).
i_atime, 
i_mtime, 
i_ctime

struct timespec Create, modify times etc. Low Unimportant.

i_blkbits unsigned int Blocksize (no of bits) Low Pertains to Device
i_blksize unsigned long Blocksize Low Pertains to Device
i_version unsigned long Used to track changes to 

inode (along with dirty)
Medium Not modelling device yet

i_blocks blkcnt_t Filesize (blocks) Low Not modelling device yet
i_bytes unsigned short Filesize (bytes [in last 

block?])
Low Not modelling device yet

i_lock spinlock_t Used to protect file size
fields?

High Correctness – but may be able to 
avoid if only used on these fields

i_mutex struct mutex Used to protect inode 
attributes

High Correctness

i_alloc_sem struct 
rw_semaphore

Used to protect inode 
attributes

High Correctness

i_op struct 
inode_operations *

Inode operations Low In model

i_fop const struct 
file_operations *

File operations Low In model

i_sb struct super_block * Pointer to superblock Low Only one superblock
i_flock struct file_lock * File lock – See note High Correctness
i_mapping struct 

address_space *
Mapping of inode to VM Low VM – avoid

i_data struct 
address_space

More to do with VM Low VM – avoid

i_dquot struct dquot * _ [X] Disk quota info Low Not interested
i_devices struct list_head List of devices Low Device Specific
i_pipe struct 

pipe_inode_info *
Pipe info Low Device Specific

i_bdev struct block_device 
*

Block device info Low Device Specific

i_cdev struct cdev * Device info Low Device Specific
i_cindex int Device info Low Device Specific
i_generation __u32 Used for security purposes Low Not interested in security
i_dnotify_mask unsigned long For directory notify Low Kernal option (trace/debug)
i_dnotify struct dnotify_struct 

*
For directory notify Low Kernal option (trace/debug)

inotify_watches struct list_head Watches this inode Low Kernal option (trace debug?)
inotify_mutex struct mutex Used when watching inode Low Kernal option (trace debug?)
i_state unsigned long e.g. Dirty/locked/freeing High Correctness.
dirtied_when unsigned long Time stamp of first dirtying Low Not modelling dirtying yet.
i_flags unsigned int Type of inode (incl type of 

locking)
Low Only modelling most liberal 

type.

i_writecount atomic_t Write access count/deny 
count (no of processes)

High Consistency (with processes)

i_security void * Used for security purposes Low Not interested in security
generic_ip void * Don’t know Low Not used in code
i_size_seqcount seqcount_t Kernal option Low Kernal option (trace?)
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B.2. Information Modelling

Superblock

Attribute Description Relevance Bit 
Estimates

Rationale

s_root Dentry for root of FS High 3 Based on max of 8 dentries 
s_umount Reader/writer semaphore High 3 Provisionally modelled in 

same way as mutex structure. 
s_lock Superblock lock – Mutex 

Structure
(count, spinlock, wait queue) 

High 3 (1 bit lock, 1 bit 
PID of process 
holding lock, 1 bit 
PID of waiting 
process [if different 
from holding 
process]) 

Based on up to 1 waiting 
process – doesn’t quite reflect 
mutex structure, but hopefully 
close enough. Assumes 2 
processes.

Dentry

Attribute Description Relevance Bit 
Estimates

Rationale

d_count Reference count (no of children) High 3 Allows for 6 processes
d_lock Spinlock (used to protect dentry) High 3 As for s_lock
d_inode Pointer to inode related to this 

dentry
High 3 8 possible inodes

d_parent Parent dentry or reflexive if root High 3 7 possible parents (all dentries have 
parents, roots parent is itself) 

d_child List of siblings High 8 Based on “marking” of relevant 
entries. Large model probably better 
served with constrained DMA.

d_rcu Queue of pending functions to be 
carried out on inode [union with 
d_child]

High 4 This is a union with d_child (only 
applies to root?). However, we budget 
separately.
4 bits includes 1 bit to identify that an 
operation is pending and 3 to identify 
that operation. If more than 1 operation 
needed it
will need to be a resource failure
(successful termination). This can be 
reviewed in the light of further 
modelling.

d_subdirs List of children High 8 Based on marking of relevant entries. 
Large model probably better served 
with constrained DMA.

d_iname First 16 chars of name High 3 We need up to 8 “names”

Inode

Attribute Description Relevance Bit 
Estimates

Rationale

i_dentry List of dentries referring to this 
node

High 3 There’s only going to be one (no 
links)

i_lock Used to protect file size fields? High 3 As for superblock lock 
i_mutex Used to protect inode attributes High 3 As for superblock mutex
i_alloc_sem Used to protect inode attributes High 3 Modelling as lock for now
i_flock File locks – see note High 9 3 bits per queue  (list of processes 

holding locks [0/1 length 2], list of 
type of lock [0/1, length 2], list of 
possible process blocks [0/1, length 
2, 0 means no process blocked 1 
means process not holding lock 
blocked])

i_state e.g. Dirty/locked/freeing High 2 Assume states of interest can be 
modelled in 2 bits

i_writecount Write access count/deny count 
(no of processes with write 
access)

High 3 Either –1, 0, 1 or 2 (assuming max 
two 
processes)
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Appendix C - Pseudocode

C.1 Miscellaneous Supporting Functions

/*
 * $Author: muehlber $ : $RCSfile: pseudo_misc.c,v $
 * $Revision: 1.16 $, $Date: 2007/08/14 16:26:35 $
 */

/* Defines: */

#define NULL    (void *) 0

#define DIRTY    1
#define DELETING 2
#define TRUE     1
#define FALSE    0

#define ERROR    0
#define SUCCESS  1

/* Types: */
typedef char * string; /* just in order to remove pointers */

typedef int spinlock_t;

typedef int atomic_t;

typedef int mutex_t;

typedef struct inode_t
 {
  int        is_allocated;
  atomic_t   i_count;
  spinlock_t i_lock;
  int        i_state;
  mutex_t    i_mutex;
 } inode_t;

inode_t iNULL = {0, 0, 0, 0};

typedef struct dentry_t
 {
  int        id; /* in order to avoid random bit shifting operations
                  * in the pseudocode I assume dentries to be numbered
                  * by 2^n with n being the decimal number of the entry. */
  int        is_allocated;
  void       *d_parent;
  atomic_t   d_count;
  spinlock_t d_lock;
  int        d_child;
  int        d_subdirs;
  inode_t    *d_inode;
  string     d_iname;
 } dentry_t;

dentry_t dNULL = {0, 0, NULL, 0, 0, 0, 0, NULL, NULL};

typedef struct lookup_res_t /* just in order to remove pointers */
 {
  dentry_t  * parent;
  dentry_t  * file;
 } lookup_res_t;

lookup_res_t lNULL = {&dNULL, &dNULL};
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/* Function defs: */
#include "pseudo.h"

/* Hacks: */
static dentry_t *root    = NULL; /* this is a pointer to the root directory;
                                  * should be part of the superblock */
static dentry_t *current = NULL; /* we assume that we have a global pointer to
                                  * the current directory of each process */

/* Global locks: */
spinlock_t inode_lock;
spinlock_t dcache_lock;

/* General comments:
 * - Most of the functions defined here use local variables such as
 *   counters or temporary dentries. Of course this is not thread-save.
 *   A model implementing the functions should either inline them
 *   or use some additional locking around each function in order to
 *   serialise their execution.
 * - This pseudocode models a mixture between a synchronous and an
 *   asynchronous filesystem. Especially the way how we wait until
 *   nobody else uses a particular dentry or inode we want to delete,
 *   is significantly different from the Linux kernel's operation.
 *   The reason for this is that I didn't want to introduce a scheduler,
 *   software interrupts and additional process lists.
 * - There will be a new version of these code snippets containing
 *   cross-references to the kernel's code.
 * - The whole pseudocode is about 10 pages long now. Since I have
 *   no means of compiling or testing it I would not expect it to be
 *   free of errors :-)
 */

/* Functions not defined explicitly:
 * - find_dentry() -- a model specific function that returns a dentry
 *   for a given parent and a filename */
extern dentry_t find_dentry   (dentry_t, string);

/* - sleep() -- waits for some time. */
extern void sleep             (void);

/* - foreach(array) -- do something with every element of array */
extern void foreach           (string);
/* - cont() -- is the continue-statement to be used in the foreach-loop. */
extern void cont              (void);

/* - spin_lock(), spin_unlock() -- spinlock operations */
extern void spin_lock         (spinlock_t);
extern void spin_unlock       (spinlock_t);

/* - first_component(), next_component(), last_component() are
 *   functions "exploding" path strings into it's components separated
 *   by /. If / is the first component of a path, it refers to the
 *   root directory. All other /es handled as delimiters. */
extern string first_component (string);
extern string next_component  (string);
extern string last_component  (string);
extern string concat          (string, string);

/* - atomic_read() and atomic_write() read and write atomic integer
 *   variables. */
extern int  atomic_read       (atomic_t);
extern void atomic_write      (atomic_t, int);
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extern void atomic_inc        (atomic_t);
extern void atomic_dec        (atomic_t);

/* - up() and down() set and anset mutexes; we can probably skip those. */
extern void up                (mutex_t);
extern void down              (mutex_t);

/* - allocate_inode(dentry) returns a new inode; i_count is set to 1,
 *   i_dentry points to dentry, all locks are released, state is dirty. */
extern inode_t allocate_inode (dentry_t);

/* - allocate_dentry(filename, parent) returns a new dentry; d_iname is
 *   set to filename, d_parent is set to parent, all locks are released,
 *   all lists are empty, d_count is 1. */
extern dentry_t allocate_dentry (string, dentry_t);

/* - deallocate_dentry() and deallocate_inode() set every data field
 *   in a given dentry or inode to 0. */
extern void deallocate_dentry (dentry_t);
extern void deallocate_inode  (inode_t);

/* Initialisation */

int init_fs (void)
{

  dentry_t my_root;
  inode_t  itmp;

  spin_lock (dcache_lock);
  spin_lock (inode_lock);

  /* get dentry for / */
  my_root = allocate_dentry ("/", dNULL);
  if (!my_root.is_allocated) { goto FIN; }

  /* get inode for / */
  itmp = allocate_inode (my_root);
  if (!itmp.is_allocated) { goto FIN; }
  my_root.d_inode   = &itmp;      /* set inode */
  my_root.d_parent  = &my_root;   /* root is its own parent  */
  my_root.d_subdirs = my_root.id; /* root is its own subdir  */
  my_root.d_child   = my_root.id; /* root is its own sibling */

  /* set up "superblock" */
  root = &my_root;

FIN:
  spin_unlock (inode_lock);
  spin_unlock (dcache_lock);

/* /lost+found is optional */
#ifdef __HAVE_LOSTANDFOUND
  if (root && sys_mkdir ("/lost+found") == SUCCESS)
#else
  if (root)
#endif
   { return (SUCCESS); }
   else
   { return (ERROR); }
 }

/* Cleanup process: */

void cleanup (void)
 {



51

  inode_t  inode;
  dentry_t dentry;

  while (1) /* This should only be an endless loop if it's actually
             * running as a separate process. Otherwise it must
             * terminate in order to avoid deadlock situations. */
   {
    spin_lock (dcache_lock);
    foreach ("dentry in /list of dentries/");
     {
      if (! atomic_read(dentry.d_count))
       { deallocate_dentry (dentry); }
     } 
    spin_unlock (dcache_lock);

    spin_lock (inode_lock);
    foreach ("inode in /list of inodes/");
     {
      if (! atomic_read(inode.i_count))
       { deallocate_inode (inode); }
      if (inode.i_state == DIRTY) /* sync operation */
       {
        spin_lock (inode.i_lock);
        inode.i_state = 0;
        spin_unlock (inode.i_lock);
       }
     } 
    spin_unlock (inode_lock);

    sleep();
   }

  return;
}

/* Helper functions: */

/* is a given dentry a directory? */
int is_directory (dentry_t dentry)
 {
  if (dentry.is_allocated && dentry.d_subdirs != 0)
   { return (TRUE); }

  return (FALSE);
 }

/* increment d_count */
void dget (dentry_t dentry)
 {
  if (dentry.is_allocated)
   {
    spin_lock (dentry.d_lock);
    if (atomic_read (dentry.d_count))
     { atomic_inc(dentry.d_count); }
    spin_unlock (dentry.d_lock);
   }

  return;
 }

/* decrement d_count */
void dput (dentry_t dentry)
 {
  if (dentry.is_allocated)
   {
    spin_lock (dentry.d_lock);
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    if (atomic_read (dentry.d_count) > 1)
     { atomic_dec (dentry.d_count); }
    spin_unlock (dentry.d_lock);
   }

  return;
 }

/* returns dentry for parent/path if it exists, NULL otherwise */
dentry_t get_dentry (string path, dentry_t parent)
 {
  dentry_t dtmp;

  spin_lock (dcache_lock);
  dtmp = find_dentry (parent, path);  /* model specific function */
  if (dtmp.is_allocated)
   {
    dget (dtmp);                     /* mark entry as "in use" */
    if (!atomic_read (dtmp.d_count)) /* did it work? */
     { dtmp = dNULL; }               /* error */
   }
  spin_unlock (dcache_lock);

  return (dtmp);
 }

/* THIS IS THE NEW VERSION OF get_dentry() AS DISCUSSED WITH ANDY
 * VIA MAIL. */
/* returns dentry for parent/path if it exists, NULL otherwise */
dentry_t get_dentry_NEW (string path, dentry_t parent)
{
 dentry_t dent;

 spin_lock (dcache_lock);

foreach ("dent in /list of dentries/");
  {
   if (!dent.is_allocated) { cont(); }  /* dent is not allocated */
   if (((dentry_t *)dent.d_parent)->id == parent.id &&  /* correct path and */
       dent.d_iname == path)          /* correct filename? */
    {
     dget (dent);                     /* mark entry as "in use" */
     if (!atomic_read (dent.d_count)) /* did it work? */
      { cont(); }                   /*  no. check next entry. */
      else
      { spin_unlock (dcache_lock);
        return (dent); }              /*  yes! return entry. */
    }
  }
 spin_unlock (dcache_lock);           /* no matching entry found. */

 return (dNULL);
}

/* path traversal, returns parent's and child's dentries */
lookup_res_t path_lookup (string path)
 {
  lookup_res_t result;
  dentry_t parent = dNULL, dtmp;
  string tmp;

  if (path[0] != '/')     /* if path does not start with / */
   {
    if (current != NULL)
     { parent = *current; } /* get current working dir */
     else
     { return (lNULL); } /* error */
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   }

  tmp = first_component (path); /* this will return "/" */
  while (tmp)
   {
    /* get dentry for current path component */
    dtmp = get_dentry (tmp, parent);

    if (!dtmp.is_allocated) /* --------------- current path does not exist */
     {
      if (!parent.is_allocated)
       { return (lNULL); } /* error */
      if (tmp != last_component (path))
       { dput (parent); return (lNULL); } /* error */
       else
       { result.parent = &parent; result.file = &dNULL;
         return (result); } 
     }

    /* ------------------------   current path does exist */
    if (tmp != last_component (path))
     {
      if (is_directory (dtmp))
       { /* continue path traversal */
        dput (parent); /* ! this line may be erroneous */
        parent = dtmp;
        tmp = next_component (path);
       }
       else 
       { /* further traversal not possible because one middle
          * component is regular file */
        dput (parent);
        dput (dtmp);
        return (lNULL); /* error */
       }
     }
     else
     { /* this is the last component; we are done. */
      tmp = NULL;
     }
   } /* while (tmp) */

  result.parent = &parent; result.file = &dtmp;
  return (result);
 }

/* release usage counters for an open file */
void path_release (dentry_t dentry)
 {
  if (dentry.is_allocated)
   {
    dput (*((dentry_t *)(dentry.d_parent)));
    dput (dentry);
   }

  return;
 }

/* update sibling list for each child of parent;
* update parent.d_subdirs */

void update_parent (dentry_t parent)
{

  dentry_t dent;
  int siblings = 0, subdirs = 0;

  if (!parent.is_allocated) { return; }
  if (!is_directory(parent)) { return; }
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  /* find subdirs and siblings */
  foreach ("dent in /list of dentries/");
   {
    if (dent.id != root->id && /* exclude root, in the models this should
                                * become something like (dent.id != 0) */
        ((dentry_t *) dent.d_parent)->id == parent.id &&
        atomic_read(dent.d_count) )
     { siblings |= dent.id;  /* refers to dent's ID */
       if (is_directory(dent))
        { subdirs |= dent.id; }
     }
   }

  /* update siblings */
  foreach ("dent in /list of dentries/");
   {
    if (dent.id != root->id && /* exclude root, in the models this should
                                * become something like (dent.id != 0) */
        ((dentry_t *) dent.d_parent)->id == parent.id &&
        atomic_read(dent.d_count) )
     { dent.d_child = siblings; }
   }

  /* update subdirs; make sure that / is a subdir of / */
  parent.d_subdirs = subdirs | parent.id;

  return;
 }

C.2 Creating a file

/*
 * $Author: muehlber $ : $RCSfile: pseudo_creat.c,v $
 * $Revision: 1.11 $, $Date: 2007/11/09 17:51:15 $
 */

/* sys_creat is actually a specific behaviour of sys_open() */
int sys_creat (string path)
{

  lookup_res_t l;
  inode_t itmp;
  dentry_t parent, file;

  l = path_lookup (path);
  parent = *l.parent;
  file = *l.file;

  if (!parent.is_allocated)
   {
    if (file.is_allocated) /* deals with root look up */
     { dput(file); }
    return (ERROR);
   }

  down (parent.d_inode->i_mutex);

  if (file.is_allocated && !is_directory (file))
   { up (parent.d_inode->i_mutex);
     path_release (file);
     return (SUCCESS); }
  if (file.is_allocated && is_directory (file))
   { up (parent.d_inode->i_mutex);
     path_release (file);
     return (ERROR); }
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  spin_lock (dcache_lock);

 file = allocate_dentry(last_component(path), parent);
  if (!file.is_allocated)
   { spin_unlock (dcache_lock);
     up (parent.d_inode->i_mutex);
     dput (parent);
     return (ERROR); }
  dget (file);

  spin_lock (inode_lock);
  itmp = allocate_inode(file);
  file.d_inode = &itmp;
  spin_unlock (inode_lock);
  if (!file.d_inode->is_allocated)
   { atomic_write (file.d_count, 0);
     dput (parent);
     spin_unlock (dcache_lock);
     up (parent.d_inode->i_mutex);
     return (ERROR); }

  update_parent (*((dentry_t *)file.d_parent));
  path_release (file);
  spin_unlock (dcache_lock);

  up (parent.d_inode->i_mutex);

  return (SUCCESS);
 }

C.3 Deleting a File

/*
 * $Author: muehlber $ : $RCSfile: pseudo_unlink.c,v $
 * $Revision: 1.9 $, $Date: 2007/06/27 13:34:02 $
 */

int sys_unlink (string path)
 {
  lookup_res_t l;
  dentry_t parent, file;

  l = path_lookup (path);
  parent = *l.parent;
  file = *l.file;

  if (!file.is_allocated || is_directory (file))
   { dput (file); dput (parent); return (ERROR); }

  down (file.d_inode->i_mutex); /* to be cleared at the point of
                                 * re-allocation! */

  spin_lock (dcache_lock); /* d_delete () */

  while (atomic_read(file.d_count) != 0) /* dentry_iput */
   {
    spin_lock (file.d_lock);
    if (atomic_read(file.d_count) == 2)
     { atomic_write(file.d_count, 0); }
    spin_unlock (file.d_lock);
   }

  /* there may be a bug in this line; I'm not sure when exactly
   * i_count is decremented or incremented. */



56

  spin_lock (inode_lock);
  while (atomic_read(file.d_inode->i_count) != 0) /* iput () */
   {
    spin_lock (file.d_inode->i_lock);
    if (atomic_read(file.d_inode->i_count) == 1)
     { atomic_write (file.d_inode->i_count, 0); }
    spin_unlock (file.d_inode->i_lock);
   }
  spin_unlock (inode_lock);

  update_parent (*((dentry_t *)file.d_parent));
  dput (parent);
  spin_unlock (dcache_lock);

  return (SUCCESS);
 }

C.4 Creating a Directory

/*
 * $Author: muehlber $ : $RCSfile: pseudo_mkdir.c,v $
 * $Revision: 1.10 $, $Date: 2007/08/13 17:22:05 $
 */

int sys_mkdir (string path)
{

  lookup_res_t l;
  inode_t itmp;
  dentry_t parent, dir;

  l = path_lookup(path);
  parent = *l.parent;
  dir = *l.file;

  if (dir.is_allocated)
   { path_release (dir); return (ERROR); }
  if (!parent.is_allocated)
   {
    if (dir.is_allocated) /* deals with root look up */
     { dput(dir); }
    return (ERROR);
   }

  spin_lock (dcache_lock);
  dir = allocate_dentry(last_component(path), parent);
  if (!dir.is_allocated)
   { spin_unlock (dcache_lock);
     dput(parent);
     return (ERROR); }

  dget(dir);

  spin_lock (inode_lock);
  itmp = allocate_inode(dir);
  dir.d_inode = &itmp;
  if (dir.d_inode->is_allocated) { down(dir.d_inode->i_mutex); }
  spin_unlock (inode_lock);

  if (!dir.d_inode->is_allocated)
   { atomic_write (dir.d_count, 0);
     dput (parent);
     spin_unlock (dcache_lock);
     return (ERROR); }

  dir.d_subdirs  = dir.id;
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  update_parent (*((dentry_t *)dir.d_parent));
  path_release (dir);
  spin_unlock (dcache_lock);
  
  up(dir.d_inode->i_mutex);

  return (SUCCESS);
 }

C.5 Removing a Directory

/*
 * $Author: muehlber $ : $RCSfile: pseudo_rmdir.c,v $
 * $Revision: 1.14 $, $Date: 2007/08/13 17:22:05 $
 */

int sys_rmdir (string path)
{

  lookup_res_t l;
  dentry_t parent, dir, tmp;
  int children = 0;

  l = path_lookup (path);
  parent = *l.parent;
  dir = *l.file;

  /* 1. -- sanity checks */
  if (!dir.is_allocated || !is_directory(dir) || !parent.is_allocated)
   { dput (dir); dput (parent); return (ERROR); }

  /* 2. -- lock the node */
  down (dir.d_inode->i_mutex);
  spin_lock (dcache_lock); /* d_delete () */

  /* 3. -- check for subdirectories
   * (needs i_mutex and dcache_lock in order to avoid others changing
   * the state) */
  foreach ("tmp in /list of dentries/");
   {
    if (((dentry_t *)(tmp.d_parent))->id == dir.id &&
        atomic_read (tmp.d_count))
     { children++; }
   }

  if (children != 0)
   {
    spin_unlock (dcache_lock);
    up (dir.d_inode->i_mutex);
    dput (dir); dput (parent); /* no path_release because another process could
                                * have already destroyed the parent relation */
    return (ERROR);
   }

  /* 4. -- mark the node for deletion
   * (uses d_inode->i_mutex and d_inode->i_state) */
  if (dir.d_inode->i_state & DELETING)
   { /* somebody else is already deleting this node -- success */
    dput (dir); dput (parent); /* no path_release because another process
                                * has already destroyed the parent relation */
    up (dir.d_inode->i_mutex);
    return (SUCCESS);
   }
   else
   { /* we are going to delete this node */
    dir.d_inode->i_state |= DELETING;
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    up (dir.d_inode->i_mutex);
   }

  /* ==> dir.d_inode->i_mutex is free now */

  /* 5. -- now remove links to this node so that later path_lookup()s won't
   * return it and we don't get any new processes working on this node */
  dir.d_parent = &dNULL;
  update_parent (parent); /* This can result in clients unsing invalid
                           * working directories. This is okay. */
  dput (parent);
  spin_unlock (dcache_lock);

  /* ==> dcache_lock is free now */
  /* ==> other processes may continue working on this directory here */

  /* 6. -- set dir.d_count to 0 */
  while (atomic_read(dir.d_count) != 0) /* dentry_iput */
   {
    spin_lock (dcache_lock);
    spin_lock (dir.d_lock);
    if (atomic_read(dir.d_count) == 2)
     { atomic_write(dir.d_count, 0); }
    spin_unlock (dir.d_lock);
    spin_unlock (dcache_lock);
   }

  /* 7. -- set dir.d_inode->i_count to 0 */
  /* ! there may be a bug in this line; I'm not sure when exactly
   * i_count is decremented or incremented. */
  spin_lock (inode_lock);
  while (atomic_read(dir.d_inode->i_count) != 1) /* iput () */
   {
    spin_lock (dir.d_inode->i_lock);
    if (atomic_read(dir.d_inode->i_count) == 1)
     { atomic_write (dir.d_inode->i_count, 0); }
    spin_unlock (dir.d_inode->i_lock);
   }
  spin_unlock (inode_lock);

  return (SUCCESS);
 }

C.6 Renaming a File or Directory

/*
 * $Author: muehlber $ : $RCSfile: pseudo_rename.c,v $
 * $Revision: 1.9 $, $Date: 2007/08/03 13:43:06 $
 */

int sys_rename (string src, string dst)
 {
  lookup_res_t l;
  dentry_t src_parent, src_file;
  dentry_t dst_parent = dNULL, dst_file = dNULL;

  l = path_lookup (src);
  src_parent = *l.parent;
  src_file = *l.file;
  
  if (!src_file.is_allocated)
   { goto MVERROR; }

  l = path_lookup (dst);
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  dst_parent = *l.parent;
  dst_file = *l.file; 
  if (!dst_parent.is_allocated || src_file.id == dst_file.id)
   { goto MVERROR; }

  if (is_directory(dst_file)) /* target is directory; move file into it */
   { dput (dst_parent);
     dst_parent = dst_file;
     dst_file = get_dentry(last_component(src), dst_parent);
     /* the implementation uses a temporary dentry; but since we
      * probably don't care about filenames at all, I use a string
      * operation. */
     dst = concat (dst, last_component(src)); }

  if (is_directory(dst_file))
   { goto MVERROR; } /* EFAULT */

  if (!is_directory(dst_file) && is_directory(src_file))
   { goto MVERROR; } /* EFAULT */

  if (is_directory(src_file) && atomic_read(src_file.d_count > 2))
   { goto MVERROR; } /* EBUSY */

  /* the implementation follows dst_file.d_parent.d_parent... and
   * checks whether there is a parent that equals src_file */
  if ("the new pathname contained a path prefix of the  old")
   { goto MVERROR; } /* EINVAL; */

  down (dst_parent.d_inode->i_mutex);

  spin_lock (dcache_lock);

  if (dst_file.is_allocated) /* remove dst_file */
   {
    while (atomic_read(dst_file.d_count) != 0) /* dentry_iput */
     {
      spin_lock (dst_file.d_lock);
      if (atomic_read(dst_file.d_count) == 2)
       { atomic_write(dst_file.d_count, 0); }
      spin_unlock (dst_file.d_lock);
     }

     /* there may be a bug in this line; I'm not sure when exactly
      * i_count is decremented or incremented. */
     spin_lock (inode_lock);
     while (atomic_read(dst_file.d_inode->i_count) != 0) /* iput () */
      {
       spin_lock (dst_file.d_inode->i_lock);
       if (atomic_read(dst_file.d_inode->i_count) == 1)
        { atomic_write (dst_file.d_inode->i_count, 0); }
       spin_unlock (dst_file.d_inode->i_lock);
      }
     spin_unlock (inode_lock);

    update_parent (*((dentry_t *)dst_file.d_parent));
    dst_file = dNULL; /* we are done with it */
   }

  /* rename */
  src_file.d_parent = &dst_parent;
  src_file.d_iname = last_component (dst);
  update_parent (src_parent);
  update_parent (dst_parent);
  dput (dst_parent);
  dput (src_parent);
  dput (src_file);
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  spin_unlock (dcache_lock);

  up (dst_parent.d_inode->i_mutex);

  return (SUCCESS);

MVERROR:
  dput (dst_file); dput (dst_parent);
  dput (src_file); dput (src_parent);
  return (ERROR);
 }
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Appendix D – Examples from the SPIN Model

D.1 Data Structures in Promela

typedef dentry {
unsigned d_count : 3;
lock d_lock;
unsigned d_inode : 3;
unsigned d_parent : 3;
bit d_child [8]; 
rcu d_rcu;
bit d_subdirs [8];
unsigned d_iname : 3

};

typedef inode {
unsigned i_dentry : 3;
lock i_lock;
lock i_mutex;
lock i_alloc_sem;
filelock i_flock;

unsigned i_state : 2;
unsigned i_writecount : 3

};

typedef dentrypool {
dentry dentries [NoofNodes];
bit available [8]

};

typedef inodepool {
inode inodes [NoofNodes];
bit available [8]

}; 

D.2. Allocating and Deallocating Nodes

inline alloc_dentry (dep,returnval, localvar,error) {
d_step{

localvar=0;
do
:: localvar==NoofNodes -> break
:: else {

if 
:: dep.available[localvar] != 0  -> localvar++
:: else  {

dep.available[localvar]=1;
returnval=localvar;
break

}
fi

}
od;
if 
:: localvar==NoofNodes -> error=1
:: else error=0
fi

} /*dstep */
if
:: error==1 ->

goto end
:: else
fi

};

inline dealloc_dentry(dep,dent) {
d_step{

assert (dent>=0 && dent<=NoofNodes-1 && dep.available[dent]==1); 
dep.available[dent]=0

} /*dstep*/
};
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D.3 Other core functions

inline allocate_dentry(dent,name,parent,lvplus1_4h,lvplus1_1) 
{

alloc_dentry(dpool,dent,lvplus1_4h,lvplus1_1);
/* init dentry defaults + parent + filename*/
dpool.dentries[dent].d_count=1; /* Not marked for deletion */
dpool.dentries[dent].d_lock.islocked=0;
dpool.dentries[dent].d_lock.lockedby=0;
dpool.dentries[dent].d_lock.waiting=0;
dpool.dentries[dent].d_inode=0; /* initially 0 */
dpool.dentries[dent].d_parent=parent; /* parent of root is root */
dpool.dentries[dent].d_child[0]=0;
dpool.dentries[dent].d_child[1]=0;
dpool.dentries[dent].d_child[2]=0;
dpool.dentries[dent].d_child[3]=0;
dpool.dentries[dent].d_child[4]=0;
dpool.dentries[dent].d_child[5]=0;
dpool.dentries[dent].d_child[6]=0; 
dpool.dentries[dent].d_child[7]=0; /* No siblings */
/* Not bothering to set rcu for now */
dpool.dentries[dent].d_subdirs[0]=0;
dpool.dentries[dent].d_subdirs[1]=0;
dpool.dentries[dent].d_subdirs[2]=0;
dpool.dentries[dent].d_subdirs[3]=0;
dpool.dentries[dent].d_subdirs[4]=0;
dpool.dentries[dent].d_subdirs[5]=0;
dpool.dentries[dent].d_subdirs[6]=0; 
dpool.dentries[dent].d_subdirs[7]=0; /* No children (dirs) */
dpool.dentries[dent].d_iname=name

}

inline modelfinddentry(name,parent,returndent,count)
{

/* Assume dcache locked when called */
assert(dcache_lock.islocked==1);
if
:: parent==NoofNodes -> { /*Parent Null*/

assert(name==0); /* We should be looking for root */
returndent=super.s_root /* And here's the root dentry */

}
:: else {

/* This is the equivalent of the dcache operation to find the right name */
/* Since speed is not important for model, will search dpool rather than use subdirs */
count=0;
do
:: count<NoofNodes -> {

if 
:: dpool.available[count]==1 && dpool.dentries[count].d_parent==parent &&

dpool.dentries[count].d_iname==name  &&
dpool.dentries[count].d_count!=0 -> { /* in use */

returndent=count;
break

}
:: else count++
fi

}
:: count==NoofNodes -> {

returndent=NoofNodes;
break

}
od

}
fi

}



63

D.4. Supporting Functions

inline get_dentry(name,parent,returndent,mfdlv_4_1) {
spinlock_lock(dcache_lock);
modelfinddentry(name,parent,returndent,mfdlv_4_1); /* specific find function */
if
:: returndent!=NoofNodes -> {  /* Found name */

dget(returndent);
assert(dpool.dentries[returndent].d_count != 0) /* replaces check for success in 

pseudocode */
}
:: else
fi;
spinlock_unlock(dcache_lock)

}

inline update_parent(dent,siblingslv,subdirslv,isdirectory_flag,count,count2)
{

assert(dent!=NoofNodes);
printf("Update parent called with dent = %u\n",dent);
is_directory(dent,isdirectory_flag);
assert(isdirectory_flag==1);

count=0;
do /* init siblings and subdirs */
:: count<NoofNodes -> {

siblingslv[count]=0;
subdirslv[count]=0;
count++;

}
:: count==NoofNodes -> break
od;

count=1; /* Don't take root into account */ 
do /* calc subdirs and siblings */
:: count<NoofNodes -> {

if
:: dpool.available[count]==1 && dpool.dentries[count].d_count!=0 /* in use */

&& dpool.dentries[count].d_parent==dent -> { /* and parent is right one */
siblingslv[count]=1; /* mark as sibling */
is_directory(count,isdirectory_flag);
if
:: isdirectory_flag -> subdirslv[count]=1; /* mark as subdir */
:: else
fi;
count++

}
:: else count++
fi;

}
:: count==NoofNodes -> break
od;
subdirslv[dent]=1; /* dent is subdir of itself */

count=1; /* Don't update root's siblings */  
do /* update siblings */
:: count<NoofNodes -> {

if
:: dpool.available[count]==1 && dpool.dentries[count].d_count!=0 /* in use */

&& dpool.dentries[count].d_parent==dent -> { /* and parent is right one */
count2=0;
do /* write sibling array */
:: count2<NoofNodes -> {

dpool.dentries[count].d_child[count2]=siblingslv[count2];
count2++

}
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:: count2==NoofNodes -> break
od

}
:: else
fi;
count++;

}
:: count==NoofNodes -> break
od;

count2=0;
do /* write subdirs array */
:: count2<NoofNodes -> {

dpool.dentries[dent].d_subdirs[count2]=subdirslv[count2];
count2++

}
:: count2==NoofNodes -> break
od

}

inline path_lookup(patharray,cwd,parent,child,tmp,dtmp,pathindex,isdirectory_flag,mfdlv_4_1) {
parent=NoofNodes; /* Null */
if
:: patharray[0]!=0 -> prepend(patharray,cwd)
:: else
fi;
assert(patharray[0]==0); /*starts with root */
tmp=0; /* first name is root */
pathindex=0; /* current position in path */
do
:: tmp != NoofNodes -> { /* Not reached end of path (NoofNodes=NULL) */ 

printf("tmp=%u, pathindex=%u\n",tmp,pathindex);
get_dentry(tmp,parent,dtmp,mfdlv_4_1);
printf("dtmp fetched as %u\n",dtmp);
if
:: dtmp==NoofNodes -> { /* current path extension doesn't exist */

if 
:: parent==NoofNodes -> {/* Never even found root */

child=NoofNodes;
break

}
:: else { /* Found root but got stuck later */

if
:: patharray[pathindex+1]!=NoofNodes -> { /* Got stuck before last 

component */
dput(parent);
parent=NoofNodes;
child=NoofNodes;
break

}
:: else { /* It was the last component in the path */

child=NoofNodes;
printf("Last component in Path!!\n");
break

}
fi

}
fi

}
:: else  { /* Current path extension does exist */

if 
:: patharray[pathindex+1]!=NoofNodes -> { /* Not last element in path */

is_directory(dtmp,isdirectory_flag);
if 
:: isdirectory_flag -> {

if 
:: parent!=NoofNodes -> dput(parent) 
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/* First time through parent = NULL, no dget on parent, so 
no dput */

:: else
fi;
parent=dtmp;
pathindex++;
tmp=patharray[pathindex]

}
:: else { /* can't go any further */

if 
:: parent!=NoofNodes -> dput(parent) 
/* First time through parent = NULL, no dget on parent, so 

no dput */
:: else
fi;
dput(dtmp);
parent=NoofNodes;
child=NoofNodes;
break;

}
fi

}
:: else { /* Is last element */

pathindex++;
tmp=patharray[pathindex]

}
fi

}
fi

}
:: tmp == NoofNodes -> {

child = dtmp;
break /* parent and child set correctly */

}
od 

}

D.5 Creating a file

inline 
sys_creat(patharray,cwd,error,parent,file,isdirectory_flag,filename,plulv_4_1,plulv_4_2,plulv_4_3,plulv_1
_1,

up_lv1,up_lv2,mfdlv_4_1){
error=0;
path_lookup(patharray,cwd,parent,file,plulv_4_1,plulv_4_2,plulv_4_3,plulv_1_1,mfdlv_4_1);
if
:: parent!=NoofNodes -> { /* if parent exists */

down(ipool.inodes[dpool.dentries[parent].d_inode].i_mutex);
if 
:: file!=NoofNodes -> is_directory(file,isdirectory_flag) /* Only check dir if file exists */
:: else
fi;
if 
:: file != NoofNodes && ! isdirectory_flag -> { /* File exists and isn't directory */

up(ipool.inodes[dpool.dentries[parent].d_inode].i_mutex);
path_release(file)

}
:: file != NoofNodes && isdirectory_flag -> { /* File exists but is directory */

up(ipool.inodes[dpool.dentries[parent].d_inode].i_mutex);
path_release(file);
error=1

}
:: file == NoofNodes -> { /* File doesn't exist */

spinlock_lock(dcache_lock);
last_component(patharray,filename); /* Get filename */
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allocate_dentry(file,filename,parent,plulv_4_1,plulv_1_1); /* borrow the PLU 
locals! */ 

assert(file!=NoofNodes && file!=0); /* replaces if structure - file not null or 
root */

/* This check is redundant - root will never be reallocated
   and allocate_dentry will terminate rather than return null 

*/
dget(file);
spinlock_lock(inode_lock);
allocate_inode(dpool.dentries[file].d_inode,file,plulv_4_1,plulv_1_1);

/* Borrowing pathlookup lvs again! */
spinlock_unlock(inode_lock);
assert(dpool.dentries[file].d_inode!=NoofNodes &&

dpool.dentries[file].d_inode!=0); /* replaces if structure */
/* This check is redundant - root will never be reallocated
   and allocate_dentry will terminate rather than return null 

*/
update_parent(dpool.dentries[file].d_parent,up_lv1,up_lv2,plulv_1_1,

plulv_4_1,plulv_4_2); /* Borrow the plu lvs */
printf("Updated Parent!! \n");
path_release(file);
spinlock_unlock(dcache_lock);
up(ipool.inodes[dpool.dentries[parent].d_inode].i_mutex);

}
fi

}
:: else { /* Either child and parent don't exist, or child is root (from path_lookup(root)) */ 

error=1;
if
:: file!=NoofNodes -> {

assert(file==0); /* can only happen for root */
dput(file)

}
:: else
fi

}
fi

}

D.6 The Test Harness body

active proctype test () {

unsigned node : 3;
bit onebitlv;
bit flag,errorflag;

byte srcpath [PathLength];
byte dstpath [PathLength];
byte tmppath [PathLength];
byte cwd[PathLength];
unsigned fourbitlv3 : 4, fourbitlv4: 4, fourbitlv5:4, fourbitlv6:4;
unsigned fourbitlv7:4,fourbitlv8 : 4, fourbitlv9:4, fourbitlv10:4;
unsigned threebitlv : 3;
bit bitlv,bitlv2;
bit bitarraylv_1 [NoofNodes];
bit bitarraylv_2 [NoofNodes];

/* Initialise Superblock */
init_superblock(dpool,ipool,super,node,fourbitlv,onebitlv);

cd(dstpath,0); /* dstpath=root */
cd(srcpath,0); /* srcpath=root */
cd(cwd,0);/* Set cwd to root - cwd never used by harness, all calls by abs path, this is just for 

call i/f */
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do 
:: {

printf("Choosing Id (1-NoofNodes-1)\n");
choose_id(node); /* Set srcpath */
printf("Choosing src cd (0:root,1:down,2:up,3:skip)\n");
printf("Current src path=");
print_path(srcpath);

#if !defined(myverif)
STDIN?c;

#endif
if

#if !defined(myverif)
:: c==48 -> cd(srcpath,0) /* root */

#endif
:: 

#if !defined(myverif)
c==49 ->

#endif
cd(srcpath,node) /* down to id */

:: 
#if !defined(myverif)

c==50 ->
#endif

cd(srcpath,NoofNodes) /* .. */
::

#if !defined(myverif)
c==51 ->

#endif 
skip

fi;
#if !defined(myverif)

STDIN?c; /* carriage return */
#endif

printf("Choosing Id (1-NoofNodes-1)\n");
choose_id(node); /* Set dstpath */
printf("Choosing dst cd (0:root,1:down,2:up,3:skip)\n");
printf("Current dst path=");
print_path(dstpath);

#if !defined(myverif)
STDIN?c;

#endif
if

#if !defined(myverif)
:: c==48 -> cd(dstpath,0)

#endif
:: 

#if !defined(myverif)
c==49 ->

#endif
cd(dstpath,node)

:: 
#if !defined(myverif)

c==50 ->
#endif

cd(dstpath,NoofNodes)
:: 

#if !defined(myverif)
c==51 ->

#endif 
skip

fi;
#if !defined(myverif)

STDIN?c; /* carriage return */
#endif 
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printf("Choosing model functions 
(0:mkdir,1:creat,2:rename,3:unlink,4:rmdir,5:skip)\n");
#if !defined(myverif)

STDIN?c;
#endif

if  /* Possibly call one of the Model functions */
:: 

#if !defined(myverif)
c==48 ->

#endif 
{

sys_mkdir(srcpath,cwd,errorflag,fourbitlv3,fourbitlv4,bitlv,threebitlv,

fourbitlv5,fourbitlv6,fourbitlv7,bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);
printf("Called Mkdir. Error=%u. Path=",errorflag);
print_path(srcpath) 

}
:: 

#if !defined(myverif)
c==49 ->

#endif 
{

sys_creat(srcpath,cwd,errorflag,fourbitlv3,fourbitlv4,bitlv,threebitlv,

fourbitlv5,fourbitlv6,fourbitlv7,bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);
printf("Called Creat. Error=%u. Path=",errorflag);
print_path(srcpath)

}
:: 

#if !defined(myverif)
c==50 ->

#endif 
{

copy_path(dstpath,tmppath);

sys_rename(srcpath,tmppath,cwd,errorflag,fourbitlv3,fourbitlv4,fourbitlv9,fourbitlv10,

bitlv,fourbitlv5,fourbitlv6,fourbitlv7,bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);
/* may alter paths!!!!!!!!!!!! */

printf("Called Rename. Error=%u. Src Path=",errorflag);
print_path(srcpath);
printf("Dst Path=");
print_path(dstpath)

}
:: 

#if !defined(myverif)
c==51 ->

#endif 
{

sys_unlink(srcpath,cwd,errorflag,fourbitlv3,fourbitlv4,bitlv,fourbitlv5,fourbitlv6,fourbitlv7,
bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);

printf("Called Unlink. Error=%u. Path=",errorflag);
print_path(srcpath)

}
:: 

#if !defined(myverif)
c==52 ->

#endif 
{

sys_rmdir(srcpath,cwd,errorflag,fourbitlv3,fourbitlv4,bitlv,fourbitlv5,fourbitlv6,fourbitlv7,
bitlv2,bitarraylv_1,bitarraylv_2,fourbitlv8);

printf("Called Rmdir. Error=%u. Path=",errorflag);
print_path(srcpath)

}
:: 
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#if !defined(myverif)
c==53 ->

#endif 
{

skip;
printf("Called no function\n")

}
fi;
printf("\n");

#if !defined(myverif)
STDIN?c; /* carriage return */

#endif 

progress_testharn:
printf("Report? (0:yes,1:no)\n");

#if !defined(myverif)
STDIN?c;

#endif
if /* Possibly report state of file system */
:: 

#if !defined(myverif)
c==48 ->

#endif 
{

printdentries(dpool,fourbitlv,fourbitlv2);
printf("\n\n");
printinodes(ipool,fourbitlv); 

}
:: 

#if !defined(myverif)
c==49 ->

#endif 
skip

fi
#if !defined(myverif)

;
STDIN?c /* carriage return */

#endif 
}
od;

end:
skip

}

D.7 Functions Supporting the Test Harness

inline cd(array,arg) /* scratch var cd_count */
{

d_step { 
if
:: arg==0 -> { /* cd root */

array[0]=0;
array[1]=NoofNodes

}
:: arg==NoofNodes -> { /* cd .. */

/* assert(array[0]==0 && array[1]!=NoofNodes);   Not root */
if /* replaces assertion for verification purposes */
:: array[0]!=0 || array[1]==NoofNodes
:: else {

cd_count=0;
do
:: array[cd_count]!=NoofNodes -> cd_count++
:: array[cd_count]==NoofNodes -> break
od;

/* assert(cd_count!=0); */
if /* replaces assertion for verification purposes */
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:: cd_count==0
:: else

array[cd_count-1]=NoofNodes
fi

}
fi

}
:: else { /* cd id */

cd_count=0;
do
:: array[cd_count]!=NoofNodes -> cd_count++
:: array[cd_count]==NoofNodes -> break
od;

/* assert(cd_count+1<NoofNodes); */
if /* replaces assertion for verification purposes */
:: cd_count+1>=NoofNodes
:: else

concat_element(array,arg)
fi

}
fi

}
};

/* Choose an id between 1 and NoofNodes-1 - assumes max noofnodes is 8 */
inline choose_id (returnval)
{

d_step{
#if !defined(myverif)

STDIN?c;
#endif

if
::

 #if !defined(myverif)
c==49 &&

#endif
NoofNames-1>=1 -> returnval=1

:: 
#if !defined(myverif)

c==50 &&
#endif

NoofNames-1>=2 -> returnval=2
:: 

#if !defined(myverif)
c==51 &&

#endif
NoofNames-1>=3 -> returnval=3

:: 
#if !defined(myverif)

c==52 &&
#endif

NoofNames-1>=4 -> returnval=4
:: 

#if !defined(myverif)
c==53 &&

#endif
NoofNames-1>=5 -> returnval=5

::
#if !defined(myverif)

c==54 &&
#endif

NoofNames-1>=6 -> returnval=6
::

#if !defined(myverif)
c==55 &&

#endif 
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NoofNames-1>=7 -> returnval=7
fi

#if !defined(myverif)
;
printf("c=%c, returnval=%u\n",c,returnval);
STDIN?c /* Get rid of carriage return */

#endif 
}

};

inline printdentries(dep,localvar,localvar2) { /* Needs 4 bit localvar */
d_step{

localvar=0;
printf("Dentry pool: \n\n");
do
:: localvar<=NoofNodes-1 -> {

if 
:: dep.available[localvar] ==1 -> {

printf("\t Dentry %u in use\n",localvar);
printf("\t d_name = %u, d_inode = %u, d_parent = %u 

\n",dep.dentries[localvar].d_iname,dep.dentries[localvar].d_inode,dep.dentries[localvar].d_parent);
printf("\n");
printf("d_count = %u\n\n", dep.dentries[localvar].d_count);

#if defined(myverif)
assert(dep.dentries[localvar].d_count==1);

#endif 
printf("\t Siblings: ");
print_relations(dep.dentries[localvar].d_child,localvar2);
printf("\n \t Sub Directories: ");
print_relations(dep.dentries[localvar].d_subdirs,localvar2);
printf("\n\n");

}
:: else printf("\t Dentry %u not in use\n",localvar)
fi;
localvar++
}

:: localvar==NoofNodes -> break
od

} /*dstep */
};
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Appendix E – Example from SMART Model

/********************************************************
Abstract model of a virtual file system (originally EXT2)
Author: Radu Siminiceanu (NIA)
Lsst update: July 2, 2007
********************************************************/

/* constants */

//int ND := 4; /* maximum number of dentries */
//int NI := 4; /* maximum number of inodes */
//int NP := 1; /* maximum number of processes */

/* reserved file indices */
int ROOT       := 1;
int LOST_FOUND := 2;

/* i_node states */
int DELETING   := 1;

/* hash function */
/* does nothing for now */
/* could be used IF implementing the dcache */
int hashvalue(int x) := x;

/*==========================================*/
/* SMART options for state space generation */
/*==========================================*/
# Verbose true
# Report true /* reports MDD stats */
# IgnoreWeightClasses true /* deals with immediate events priorities */
# Generations 5000 /* For variable reordering, if needed  */
# GarbageSize 499000
# GarbageCollection GLOBAL

/* Recommended options for the state-space construction algorithm */
/* - Kronecker consistent: */
/*    MDD_SATURATION    -- standard on-the-fly: full MDD nodes   */
/*    MDD_SPARSE        -- on-the-fly: sparse MDD nodes          */
# StateStorage MDD_SPARSE
/* Non-KC algorithms are junk */

/*==========================================*/

spn EXT2(int nd, int ni, int np) := {

  /* Superblock */
  
  place 
    superblock_root, /* not used */
    superblock_umount_lock, /* not used */
    superblock_lock, /* not used */

    dcache_lock, /* global lock on dcache */
    inode_lock; /* global lock on inodes */

    /* Convention used in this petri net:
       Locks and mutexes have the following values:
          if available,  >0
          not avalibale, =0
       I.e.: getting a lock/mutex removes a token
             releasing a lock/mutex adds the token back
    */         

    init(dcache_lock:1, inode_lock:1);
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    partition(3*nd-2+ni+8*np+1:dcache_lock:inode_lock);

  /* D_Entries */

  for (int i in {1..nd}) {
    place 
      d_allocated[i],   /* is allocated? flag */
      d_parent[i], /* id of parent: 0=n/a, or 1..ND */
      d_count[i], /* reference count */
      d_lock[i], /* not used */
      d_inode[i], /* id of corresponding inode: 0=n/a, or 1..NI */
      d_subdirs[i]; /* number of subdirectories */

    /* put all places of dentry #i in partition #i */
    /* will result in large local subspace */
    partition(
      cond(i>1,3*i-4,1):d_allocated[i]:d_subdirs[i]:d_count[i]:d_lock[i],
      cond(i>1,3*i-3,1):d_parent[i],
      cond(i>1,3*i-2,1):d_inode[i]
    );

    init(d_lock[i]:1);

  }

  /* Inodes section */

  for (int i in {1..ni}) {
    place 
      i_allocated[i], /* is allocated ? */
      i_count[i], /* don't know what this is */
      i_lock[i], /* not used */
      i_state[i], /* not used */
      i_mutex[i]; /* used in create(): down(parent.d_inode->i_mutex)) */

    partition(3*nd-2+i:
      i_allocated[i]:
      i_count[i]:
      i_lock[i]:
      i_state[i]:
      i_mutex[i]
    );

    init(i_mutex[i]:1); /* initially mutex available */
    init(i_lock[i]:1); /* initially lock available */
  }

  //===========================================
  /* Processes */
  //===========================================

  /* Cleanup process */

  place
    p_start_cleanup_d,
    p_end_cleanup_d,
    p_start_cleanup_i,
    p_end_cleanup_i;
  partition(
    3*nd-2+ni+8*np+2:p_start_cleanup_d:p_end_cleanup_d:
      p_start_cleanup_i:p_end_cleanup_i
  );
  init(p_start_cleanup_d:1);
  trans
    t_start_cleanup_d,
    t_end_cleanup_d,
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    t_start_cleanup_i,
    t_end_cleanup_i;

  for (int i in {1..nd}) {
    place p_cleanup_d[i];
    partition(3*nd-2+ni+8*np+2:p_cleanup_d[i]);
    trans
      t_skip_d[i],
      t_cleanup_d[i];
  }
  for (int i in {1..ni}) {
    place p_cleanup_i[i];
    partition(3*nd-2+ni+8*np+2:p_cleanup_i[i]);
    trans
      t_skip_i[i],
      t_cleanup_i[i];
  }
  arcs(
    p_start_cleanup_d:t_start_cleanup_d,
      t_start_cleanup_d:p_cleanup_d[1],
      dcache_lock:t_start_cleanup_d,
    p_cleanup_d[nd]:t_cleanup_d[nd],
      t_cleanup_d[nd]:p_end_cleanup_d,
      d_allocated[nd]:t_cleanup_d[nd]:tk(d_allocated[nd]),
      d_parent[nd]:t_cleanup_d[nd]:tk(d_parent[nd]),
      d_inode[nd]:t_cleanup_d[nd]:tk(d_inode[nd]),
      d_lock[nd]:t_cleanup_d[nd]:tk(d_lock[nd]),
      d_subdirs[nd]:t_cleanup_d[nd]:tk(d_subdirs[nd]),
      t_cleanup_d[nd]:d_lock[nd],
    p_cleanup_d[nd]:t_skip_d[nd],
      t_skip_d[nd]:p_end_cleanup_d,
    p_end_cleanup_d:t_end_cleanup_d,
      t_end_cleanup_d:p_start_cleanup_i,
      t_end_cleanup_d:dcache_lock
  );
  inhibit(dcache_lock:t_end_cleanup_d);
  guard(
    t_cleanup_d[nd]:tk(d_count[nd])==0,
    t_skip_d[nd]:tk(d_count[nd])>0
  );

  arcs(
    p_start_cleanup_i:t_start_cleanup_i,
      t_start_cleanup_i:p_cleanup_i[1],
      inode_lock:t_start_cleanup_i,
    p_cleanup_i[ni]:t_cleanup_i[ni],
      t_cleanup_i[ni]:p_end_cleanup_i,
    p_cleanup_i[ni]:t_skip_i[ni],
      t_skip_i[ni]:p_end_cleanup_i,
      i_allocated[ni]:t_cleanup_i[ni]:tk(i_allocated[ni]),
      i_lock[ni]:t_cleanup_i[ni]:tk(i_lock[ni]),
      i_state[ni]:t_cleanup_i[ni]:tk(i_state[ni]),
      i_mutex[ni]:t_cleanup_i[ni]:tk(i_mutex[ni]),
      t_cleanup_i[ni]:i_lock[ni],
      t_cleanup_i[ni]:i_mutex[ni],
    p_end_cleanup_i:t_end_cleanup_i,
      t_end_cleanup_i:p_start_cleanup_d,
      t_end_cleanup_i:inode_lock
  );
  inhibit(inode_lock:t_end_cleanup_i);
  guard(
    t_cleanup_i[ni]:tk(i_count[ni])==0,
    t_skip_i[ni]:tk(i_count[ni])>0
  );

  for (int i in {1..nd-1}) {
    arcs(
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      p_cleanup_d[i]:t_cleanup_d[i],
        t_cleanup_d[i]:p_cleanup_d[i+1],
        d_allocated[i]:t_cleanup_d[i]:tk(d_allocated[i]),
        d_parent[i]:t_cleanup_d[i]:tk(d_parent[i]),
        d_inode[i]:t_cleanup_d[i]:tk(d_inode[i]),
        d_lock[i]:t_cleanup_d[i]:tk(d_lock[i]),
        d_subdirs[i]:t_cleanup_d[i]:tk(d_subdirs[i]),
        t_cleanup_d[i]:d_lock[i],
      p_cleanup_d[i]:t_skip_d[i],
        t_skip_d[i]:p_cleanup_d[i+1]
    );
    guard(
      t_cleanup_d[i]:tk(d_count[i])==0,
      t_skip_d[i]:tk(d_count[i])>0
    );
  }

  for (int i in {1..ni-1}) {
    arcs(
      p_cleanup_i[i]:t_cleanup_i[i],
        t_cleanup_i[i]:p_cleanup_i[i+1],
        i_allocated[i]:t_cleanup_i[i]:tk(i_allocated[i]),
        i_lock[i]:t_cleanup_i[i]:tk(i_lock[i]),
        i_state[i]:t_cleanup_i[i]:tk(i_state[i]),
        i_mutex[i]:t_cleanup_i[i]:tk(i_mutex[i]),
        t_cleanup_i[i]:i_lock[i],
        t_cleanup_i[i]:i_mutex[i],
      p_cleanup_i[i]:t_skip_i[i],
        t_skip_i[i]:p_cleanup_i[i+1]
    );
    guard(
      t_cleanup_i[i]:tk(i_count[i])==0,
      t_skip_i[i]:tk(i_count[i])>0
    );
  }

  //----------------------------------------
  //       Concurrent processes
  //----------------------------------------

  for (int p in {1..np}) {

    place
      /* "program counters" */
      p_begin[p],
      p_start_create[p],
      p_start_unlink[p],
      p_start_mkdir[p],
      p_start_rmdir[p],
      p_file[p],
      p_parent[p],
      p_inode[p];

    init(p_begin[p]:1);

    partition(
      3*nd-2+ni+8*p:p_begin[p]:p_start_create[p]:p_start_unlink[p]:p_start_mkdir[p]:p_start_rmdir[p],
      3*nd-2+ni+8*p-1:p_parent[p],
      3*nd-2+ni+8*p-2:p_file[p],
      3*nd-2+ni+8*p-3:p_inode[p]
    );

    trans
      t_start_create[p],
      t_start_unlink[p],
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      t_start_mkdir[p],
      t_start_rmdir[p];
    arcs(
      p_begin[p]:t_start_create[p],
        t_start_create[p]:p_start_create[p],
        /* clear old arguments */
        p_file[p]:t_start_create[p]:tk(p_file[p]),
        p_parent[p]:t_start_create[p]:tk(p_parent[p]),
        p_inode[p]:t_start_create[p]:tk(p_inode[p]),
      p_begin[p]:t_start_unlink[p],
        t_start_unlink[p]:p_start_unlink[p],
        /* clear old arguments */
        p_file[p]:t_start_unlink[p]:tk(p_file[p]),
        p_parent[p]:t_start_unlink[p]:tk(p_parent[p]),
        p_inode[p]:t_start_unlink[p]:tk(p_inode[p]),
      p_begin[p]:t_start_mkdir[p],
        t_start_mkdir[p]:p_start_mkdir[p],
        /* clear old arguments */
        p_file[p]:t_start_mkdir[p]:tk(p_file[p]),
        p_parent[p]:t_start_mkdir[p]:tk(p_parent[p]),
        p_inode[p]:t_start_mkdir[p]:tk(p_inode[p]),
      p_begin[p]:t_start_rmdir[p],
        t_start_rmdir[p]:p_start_rmdir[p],
        /* clear old arguments */
        p_file[p]:t_start_rmdir[p]:tk(p_file[p]),
        p_parent[p]:t_start_rmdir[p]:tk(p_parent[p]),
        p_inode[p]:t_start_rmdir[p]:tk(p_inode[p])
    );

    /* ----------------------------------- */
    /* PN "program counters"  for create() */
    /* ----------------------------------- */
    place
      p_create_lookup[p],       // path_lookup(parent,file)
      p_create_line1[p],        // if (!parent.is_allocated)
      p_create_line2[p],        //  return ERROR
      p_create_line3[p],        // down(parent.d_inode->i_mutex)
      p_create_line4[p],        // if (file.is_allocated && !is_directory(file))
      p_create_line5[p],        //  up(parent.d_inode->i_mutex)
      p_create_line6[p],        //  path_release(file)
      p_create_line7[p],        //  return SUCCESS
      p_create_line8[p],        // if (file.is_alocated && is_directory(file))
      p_create_line9[p],        //  up(parent.d_inode->i_mutex)
      p_create_line10[p],       //  path_release(file)
      p_create_line11[p],       //  return ERROR
      p_create_line12[p],       // spin_lock(dcache_lock)
      p_create_line13[p],       // file = allocate_dentry()
      p_create_line14[p],       // if (file.is_allocated)
      p_create_line15[p],       //  spin_unlock(dcache_loc)
      p_create_line16[p],       //  up(parent.d_inode->i_mutex)
     p_create_line17[p],       //  dput(parent)

      p_create_line18[p],       //  return ERROR
      p_create_line19[p],       // dget(file)
      p_create_line20[p],       // spin_lock(inode_lock)
      p_create_line21[p],       // itmp = allocate_inode(file)
      p_create_line22[p],       // file.d_inode = &itmp
      p_create_line23[p],       // spin_unlock(inode_lock)
      p_create_line24[p],       // if (file.d_inode->is_allocated)
      p_create_line25[p],       //  atomic_write(d_count)
      p_create_line26[p],       //  dput(parent)
      p_create_line27[p],       //  spin_unlock(dcache_lock)
      p_create_line28[p],       //  up(parent.d_inode->i_mutex)
      p_create_line29[p],       //  return ERROR
      p_create_line30[p],       // update(parent)
      p_create_line31[p],       // path_release(file)
      p_create_line32[p],       // spin_unlock(dcache_lock)
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      p_create_line33[p],       // up(parent.d_inode->i_mutex)
      p_create_line34[p];       // return SUCCESS
    partition(
      3*nd-2+ni+8*p-4:
       p_create_line1[p]:p_create_line2[p]:p_create_line3[p]:
       p_create_line4[p]:p_create_line5[p]:p_create_line6[p]:
       p_create_line7[p]:p_create_line8[p]:p_create_line9[p]:
       p_create_line10[p]:p_create_line11[p]:p_create_line12[p]:
       p_create_line13[p]:p_create_line14[p]:p_create_line15[p]:
       p_create_line16[p]:p_create_line17[p]:p_create_line18[p]:
       p_create_line19[p]:p_create_line20[p]:p_create_line21[p]:
       p_create_line22[p]:p_create_line23[p]:p_create_line24[p]:
       p_create_line25[p]:p_create_line26[p]:p_create_line27[p]:
       p_create_line28[p]:p_create_line29[p]:p_create_line30[p]:
       p_create_line31[p]:p_create_line32[p]:p_create_line33[p]:
       p_create_line34[p]:p_create_lookup[p]
    );

    /* ----- Create transitions ----- */

    /* ---------- Create step 0 ---------- */
    // --- initiate call: store new params
    for (int i in {1..nd}) {
      for (int j in {1..nd}) {
        trans
          t_create_step0[p][i][j];
        arcs(
          p_start_create[p]:t_create_step0[p][i][j],
            t_create_step0[p][i][j]:p_create_lookup[p],
            /* store new values */
            p_file[p]:t_create_step0[p][i][j]:tk(p_file[p]),
            p_parent[p]:t_create_step0[p][i][j]:tk(p_parent[p]),
            t_create_step0[p][i][j]:p_file[p]:i,
            t_create_step0[p][i][j]:p_parent[p]:j
        );
        inhibit(p_create_lookup[p]:t_create_step0[p][i][j]);
      }
    }
    /* ---------- Create: lookup ---------- */
    // --- path_lookup(parent,file)
    for (int i in {1..nd}) {
      for (int j in {1..nd}) {
        trans
          t_create_lookup[p][i][j];
        arcs(
          p_create_lookup[p]:t_create_lookup[p][i][j],
            t_create_lookup[p][i][j]:p_create_line1[p],
            t_create_lookup[p][i][j]:d_count[i]:cond(tk(d_allocated[i])>0, 1, 0)
        );
        cond(i!=j, arcs(
            t_create_lookup[p][i][j]:d_count[j]:cond(tk(d_allocated[j])>0, 1, 0)), null);
        guard(
          t_create_lookup[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
        );
        inhibit(d_count[i]:t_create_lookup[p][i][j]:nd);
        cond(i!=j, inhibit(d_count[j]:t_create_lookup[p][i][j]:nd), null);
      }
    }
    /* ---------- Create step 1 ---------- */
    // --- if (!parent.is_allocated)
    for (int i in {1..nd}) {
      for (int j in {1..nd}) {
        trans
          t_create_step1_then[p][i][j],
          t_create_step1_else[p][i][j];
        arcs(
          p_create_line1[p]:t_create_step1_then[p][i][j],
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            t_create_step1_then[p][i][j]:p_create_line2[p],
            d_count[i]:t_create_step1_then[p][i][j]:cond(tk(d_allocated[i])>0, 1, 0),
          p_create_line1[p]:t_create_step1_else[p][i][j],
            t_create_step1_else[p][i][j]:p_create_line3[p]
        );
        guard(
          t_create_step1_then[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j & tk(d_allocated[j])==0,
          t_create_step1_else[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j & tk(d_allocated[j])>0
        );
      }
    }
    /* ---------- Create step 2 ---------- */
    // --- return ERROR
        trans
          t_create_step2[p];
        arcs(
          p_create_line2[p]:t_create_step2[p],
            t_create_step2[p]:p_begin[p]
        );
        inhibit(p_begin[p]:t_create_step2[p]);
    /* ---------- Create step 3 ---------- */
    // --- down(parent.d_inode->i_mutex)
    for (int j in {1..nd}) {
      for (int k in {1..ni}) {
        trans
          t_create_step3[p][j][k];
        arcs(
          p_create_line3[p]:t_create_step3[p][j][k],
            t_create_step3[p][j][k]:p_create_line4[p],
            i_mutex[k]:t_create_step3[p][j][k]
        );
        guard(
          t_create_step3[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
        );
      }
    }
    /* ---------- Create step 4 ---------- */
    // --- if (file.is_allocated && !is_directory(file))
    for (int i in {1..nd}) {
        trans
          t_create_step4_then[p][i],
          t_create_step4_else[p][i];
        arcs(
          p_create_line4[p]:t_create_step4_then[p][i],
            t_create_step4_then[p][i]:p_create_line5[p],
          p_create_line4[p]:t_create_step4_else[p][i],
            t_create_step4_else[p][i]:p_create_line8[p]
        );
        guard(
          t_create_step4_then[p][i]:tk(p_file[p])==i &   tk(d_allocated[i])>0 & tk(d_subdirs[i])==0,
          t_create_step4_else[p][i]:tk(p_file[p])==i & !(tk(d_allocated[i])>0 & tk(d_subdirs[i])==0)
        );
    }
    /* ---------- Create step 5 ---------- */
    // --- up(parent.d_inode->i_mutex)
    for (int j in {1..nd}) {
      for (int k in {1..ni}) {
        trans
          t_create_step5[p][j][k];
        arcs(
          p_create_line5[p]:t_create_step5[p][j][k],
            t_create_step5[p][j][k]:p_create_line6[p],
            t_create_step5[p][j][k]:i_mutex[k]
        );
        guard(
          t_create_step5[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
        );
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        inhibit(i_mutex[k]:t_create_step5[p][j][k]:np);
      }
    }
    /* ---------- Create step 6 ---------- */
    // --- path_release(file)
    for (int i in {1..nd}) {
      for (int j in {1..nd}) {
        trans
          t_create_step6[p][i][j];
        arcs(
          p_create_line6[p]:t_create_step6[p][i][j],
            t_create_step6[p][i][j]:p_create_line7[p],
            d_count[i]:t_create_step6[p][i][j]:cond(tk(d_count[i])>1, 1, 0)
        );
        cond(i!=j, arcs(
            d_count[j]:t_create_step6[p][i][j]:cond(tk(d_count[j])>1, 1, 0)), null);
        guard(
          t_create_step6[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
        );
      }
    }
    /* ---------- Create step 7 ---------- */
    // --- return SUCCESS
        trans
          t_create_step7[p];
        arcs(
          p_create_line7[p]:t_create_step7[p],
            t_create_step7[p]:p_begin[p]
        );
        inhibit(p_begin[p]:t_create_step7[p]);
    /* ---------- Create step 8 ---------- */
    // --- if (file.is_allocated && is_directory(file))
    for (int i in {1..nd}) {
        trans
          t_create_step8_then[p][i],
          t_create_step8_else[p][i];
        arcs(
          p_create_line8[p]:t_create_step8_then[p][i],
            t_create_step8_then[p][i]:p_create_line9[p],
          p_create_line8[p]:t_create_step8_else[p][i],
            t_create_step8_else[p][i]:p_create_line12[p]
        );
        guard(
          t_create_step8_then[p][i]:tk(p_file[p])==i &   tk(d_allocated[i])>0 & tk(d_subdirs[i])>0,
          t_create_step8_else[p][i]:tk(p_file[p])==i & !(tk(d_allocated[i])>0 & tk(d_subdirs[i])>0)
        );
    }
    /* ---------- Create step 9 ---------- */
    // --- up(parent.d_inode->i_mutex)
    for (int j in {1..nd}) {
      for (int k in {1..ni}) {
        trans
          t_create_step9[p][j][k];
        arcs(
          p_create_line9[p]:t_create_step9[p][j][k],
            t_create_step9[p][j][k]:p_create_line10[p],
            t_create_step9[p][j][k]:i_mutex[k]
        );
        guard(
          t_create_step9[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
        );
        inhibit(i_mutex[k]:t_create_step9[p][j][k]:np);
      }
    }
    /* ---------- Create step 10 ---------- */
    // --- path_release(file)
    for (int i in {1..nd}) {
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      for (int j in {1..nd}) {
        trans
          t_create_step10[p][i][j];
        arcs(
         p_create_line10[p]:t_create_step10[p][i][j],

            t_create_step10[p][i][j]:p_create_line11[p],
            d_count[i]:t_create_step10[p][i][j]:cond(tk(d_count[i])>1, 1, 0)
        );
        cond(i!=j, arcs(
            d_count[j]:t_create_step10[p][i][j]:cond(tk(d_count[j])>1, 1, 0)), null);
        guard(
          t_create_step10[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
        );
      }
    }
    /* ---------- Create step 11 ---------- */
    // --- return SUCCESS
        trans
          t_create_step11[p];
        arcs(
          p_create_line11[p]:t_create_step11[p],
            t_create_step11[p]:p_begin[p]
        );
        inhibit(p_begin[p]:t_create_step11[p]);
    /* ---------- Create step 12 ---------- */
    // --- spin_lock(dcache_lock)
        trans
          t_create_step12[p];
        arcs(
          p_create_line12[p]:t_create_step12[p],
            t_create_step12[p]:p_create_line13[p],
            dcache_lock:t_create_step12[p]
        );
    /* ---------- Create step 13 ---------- */
    // --- allocate_dentry
    for (int i in {1..nd}) {
      for (int j in {1..nd}) {
        trans
          t_create_step13[p][i][j];
        arcs(
          p_create_line13[p]:t_create_step13[p][i][j],
            t_create_step13[p][i][j]:p_create_line14[p],
            d_allocated[i]:t_create_step13[p][i][j]:tk(d_allocated[i]),
            t_create_step13[p][i][j]:d_allocated[i],
            d_count[i]:t_create_step13[p][i][j]:tk(d_count[i]),
            t_create_step13[p][i][j]:d_count[i],
            d_lock[i]:t_create_step13[p][i][j]:tk(d_lock[i]),
            t_create_step13[p][i][j]:d_lock[i],
            d_parent[i]:t_create_step13[p][i][j]:tk(d_parent[i]),
            t_create_step13[p][i][j]:d_parent[i]:j
        );
        guard(
          t_create_step13[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j & tk(d_allocated[i])==0
        );
      }
    }
    /* ---------- Create step 14 ---------- */
    // --- if (!file.is_allocated)
    for (int i in {1..nd}) {
        trans
          t_create_step14_then[p][i],
          t_create_step14_else[p][i];
        arcs(
          p_create_line14[p]:t_create_step14_then[p][i],
            t_create_step14_then[p][i]:p_create_line15[p],
          p_create_line14[p]:t_create_step14_else[p][i],
            t_create_step14_else[p][i]:p_create_line19[p]
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        );
        guard(
          t_create_step14_then[p][i]:tk(p_file[p])==i & tk(d_allocated[i])==0,
          t_create_step14_else[p][i]:tk(p_file[p])==i & tk(d_allocated[i])>0
        );
   }

    /* ---------- Create step 15 ---------- */
    // --- spin_unlock(dcache_lock)
        trans
          t_create_step15[p];
        arcs(
          p_create_line15[p]:t_create_step15[p],
            t_create_step15[p]:p_create_line16[p],
            t_create_step15[p]:dcache_lock
        );
        inhibit(dcache_lock:t_create_step15[p]:2);
    /* ---------- Create step 16 ---------- */
    // --- up(parent.d_inode->i_mutex)
    for (int j in {1..nd}) {
      for (int k in {1..ni}) {
        trans
         t_create_step16[p][j][k];

        arcs(
          p_create_line16[p]:t_create_step16[p][j][k],
            t_create_step16[p][j][k]:p_create_line17[p],
            t_create_step16[p][j][k]:i_mutex[k]
        );
        guard(
          t_create_step16[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
        );
        inhibit(i_mutex[k]:t_create_step16[p][j][k]:np);
      }
    }
    /* ---------- Create step 17 ---------- */
    // --- dput(parent)
    for (int j in {1..nd}) {
        trans
          t_create_step17[p][j];
        arcs(
          p_create_line17[p]:t_create_step17[p][j],
            t_create_step17[p][j]:p_create_line18[p],
            d_count[j]:t_create_step17[p][j]:cond(tk(d_count[j])>1, 1, 0)
        );
        guard(
          t_create_step17[p][j]:tk(p_parent[p])==j
        );
    }
    /* ---------- Create step 18 ---------- */
    // --- return ERROR
        trans
          t_create_step18[p];
        arcs(
          p_create_line18[p]:t_create_step18[p],
            t_create_step18[p]:p_begin[p]
        );
        inhibit(p_begin[p]:t_create_step18[p]);
    /* ---------- Create step 19 ---------- */
    // --- dget(file)
    for (int i in {1..nd}) {
        trans
          t_create_step19[p][i];
        arcs(
          p_create_line19[p]:t_create_step19[p][i],
            t_create_step19[p][i]:p_create_line20[p],
            t_create_step19[p][i]:d_count[i]
        );
        guard(
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          t_create_step19[p][i]:tk(p_file[p])==i
        );
        inhibit(d_count[i]:t_create_step19[p][i]:np+1);
    }
    /* ---------- Create step 20 ---------- */
    // --- spin_lock(inode_lock)
        trans
          t_create_step20[p];
        arcs(
          p_create_line20[p]:t_create_step20[p],
            t_create_step20[p]:p_create_line21[p],
            inode_lock:t_create_step20[p]
        );
    /* ---------- Create step 21 ---------- */
    // --- allocate_inode(file)
    for (int k in {2..ni}) {
        trans
          t_create_step21[p][k];
        arcs(
          p_create_line21[p]:t_create_step21[p][k],
            t_create_step21[p][k]:p_create_line22[p],
            t_create_step21[p][k]:i_allocated[k],
            i_count[k]:t_create_step21[p][k]:tk(i_count[k]),
            t_create_step21[p][k]:i_count[k],
            i_mutex[k]:t_create_step21[p][k]:tk(i_mutex[k]),
            t_create_step21[p][k]:i_mutex[k],
            i_lock[k]:t_create_step21[p][k]:tk(i_lock[k]),
            t_create_step21[p][k]:i_lock[k],
            p_inode[p]:t_create_step21[p][k]:tk(p_inode[p]),
            t_create_step21[p][k]:p_inode[p]:k
        );
        guard(
          t_create_step21[p][k]:tk(i_allocated[k])==0
        );
        inhibit(i_allocated[k]:t_create_step21[p][k]);
        /* allocate first inode available */
        /* i.e. if allocating inode k, then all inodes before k are already allocated */
        for (int h in {1..k-1}) {
          arcs(
            i_allocated[h]:t_create_step21[p][k],
            t_create_step21[p][k]:i_allocated[h]
          );
        }
    }
        /* no inodes available */
        trans
          t_create_step21x[p];
        arcs(
          p_create_line21[p]:t_create_step21x[p],
            t_create_step21x[p]:p_create_line22[p],
            p_inode[p]:t_create_step21x[p]:tk(p_inode[p]),
            t_create_step21x[p]:p_inode[p]:ni+1
        );
        for (int h in {1..ni}) {
          arcs(
            i_allocated[h]:t_create_step21x[p],
            t_create_step21x[p]:i_allocated[h]
          );
        }
    /* ---------- Create step 22 ---------- */
    // --- file.d_inode = &itmp
    for (int i in {1..nd}) {
      for (int k in {2..ni+1}) {
        trans
          t_create_step22[p][i][k];
        arcs(
          p_create_line22[p]:t_create_step22[p][i][k],
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            t_create_step22[p][i][k]:p_create_line23[p],
            d_inode[i]:t_create_step22[p][i][k]:tk(d_inode[i]),
            t_create_step22[p][i][k]:d_inode[i]:k
        );
        guard(
          t_create_step22[p][i][k]:tk(p_file[p])==i & tk(p_inode[p])==k
        );
      }
    }
    /* ---------- Create step 23 ---------- */
    // --- spin_unlock(inode_lock)
        trans
          t_create_step23[p];
        arcs(
          p_create_line23[p]:t_create_step23[p],
            t_create_step23[p]:p_create_line24[p],
            t_create_step23[p]:inode_lock
        );
        inhibit(inode_lock:t_create_step23[p]);
    /* ---------- Create step 24 ---------- */
    // --- if (!file.d_inode->is_allocated)
    for (int k in {1..ni}) {
        trans
          t_create_step24_then[p][k],
          t_create_step24_else[p][k];
        arcs(
          p_create_line24[p]:t_create_step24_then[p][k],
            t_create_step24_then[p][k]:p_create_line25[p],
          p_create_line24[p]:t_create_step24_else[p][k],
            t_create_step24_else[p][k]:p_create_line30[p]
        );
        guard(
          t_create_step24_then[p][k]:tk(p_inode[p])==k & tk(i_allocated[k])==0,
          t_create_step24_else[p][k]:tk(p_inode[p])==k & tk(i_allocated[k])>0
        );
    }
        /* none available */
        trans
          t_create_step24_thenx[p];
        arcs(
          p_create_line24[p]:t_create_step24_thenx[p],
            t_create_step24_thenx[p]:p_create_line25[p]
        );
        guard(
          t_create_step24_thenx[p]:tk(p_inode[p])==ni+1
        );
    /* ---------- Create step 25 ---------- */
    // --- atomic_write(file.d_count, 0)
    for (int i in {1..nd}) {
        trans
          t_create_step25[p][i];
        arcs(
          p_create_line25[p]:t_create_step25[p][i],
            t_create_step25[p][i]:p_create_line26[p],
            d_count[i]:t_create_step25[p][i]:tk(d_count[i]),
            d_allocated[i]:t_create_step25[p][i]:tk(d_allocated[i]),
            d_parent[i]:t_create_step25[p][i]:tk(d_parent[i])
        );
        guard(
          t_create_step25[p][i]:tk(p_file[p])==i
        );
    }
    /* ---------- Create step 26 ---------- */
    // --- dput(parent)
    for (int j in {1..nd}) {
        trans
          t_create_step26[p][j];
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        arcs(
          p_create_line26[p]:t_create_step26[p][j],
            t_create_step26[p][j]:p_create_line27[p],
            d_count[j]:t_create_step26[p][j]:cond(tk(d_count[j])>1, 1, 0)
        );
        guard(
          t_create_step26[p][j]:tk(p_parent[p])==j
        );
    }
    /* ---------- Create step 27 ---------- */
    // --- spin_unlock(dcache_lock)
        trans
          t_create_step27[p];
        arcs(
          p_create_line27[p]:t_create_step27[p],
            t_create_step27[p]:p_create_line28[p],
            t_create_step27[p]:dcache_lock
        );
        inhibit(dcache_lock:t_create_step27[p]);
    /* ---------- Create step 28 ---------- */
    // --- up(parent.d_inode->i_mutex)
    for (int j in {1..nd}) {
      for (int k in {1..ni}) {
        trans
          t_create_step28[p][j][k];
        arcs(
          p_create_line28[p]:t_create_step28[p][j][k],
            t_create_step28[p][j][k]:p_create_line29[p],
            t_create_step28[p][j][k]:i_mutex[k]
        );
        guard(
          t_create_step28[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
        );
        inhibit(i_mutex[k]:t_create_step28[p][j][k]);
      }
    }
    /* ---------- Create step 29 ---------- */
    // --- return ERROR
        trans
          t_create_step29[p];
        arcs(
          p_create_line29[p]:t_create_step29[p],
            t_create_step29[p]:p_begin[p]
        );
        inhibit(p_begin[p]:t_create_step29[p]);
    /* ---------- Create step 30 ---------- */
    // --- update_parent()
    for (int i in {1..nd}) {
      for (int j in {1..nd}) {
        trans
          t_create_step30[p][i][j];
        arcs(
          p_create_line30[p]:t_create_step30[p][i][j],
            t_create_step30[p][i][j]:p_create_line31[p],
            d_parent[i]:t_create_step30[p][i][j]:tk(d_parent[i]),
            t_create_step30[p][i][j]:d_parent[i]:j,
            t_create_step30[p][i][j]:d_subdirs[j]
        );
        guard(
          t_create_step30[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
        );
        inhibit(d_subdirs[j]:t_create_step30[p][i][j]:nd);
      }
    }
    /* ---------- Create step 31 ---------- */
    // --- path_release(file)
    for (int i in {1..nd}) {
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      for (int j in {1..nd}) {
        trans
          t_create_step31[p][i][j];
        arcs(
          p_create_line31[p]:t_create_step31[p][i][j],
            t_create_step31[p][i][j]:p_create_line32[p],
            d_count[i]:t_create_step31[p][i][j]:cond(tk(d_count[i])>1, 1, 0)
        );
        cond(i!=j, arcs(
            d_count[j]:t_create_step31[p][i][j]:cond(tk(d_count[j])>1, 1, 0)), null);
        guard(
          t_create_step31[p][i][j]:tk(p_file[p])==i & tk(p_parent[p])==j
        );
      }
    }
    /* ---------- Create step 32 ---------- */
    // --- spin_unlock(dcache_lock)
        trans
          t_create_step32[p];
        arcs(
          p_create_line32[p]:t_create_step32[p],
            t_create_step32[p]:p_create_line33[p],
            t_create_step32[p]:dcache_lock
        );
        inhibit(dcache_lock:t_create_step32[p]);
    /* ---------- Create step 33 ---------- */
    // --- up(parent.d_inode->i_mutex)
    for (int j in {1..nd}) {
      for (int k in {1..ni}) {
        trans
          t_create_step33[p][j][k];
        arcs(
          p_create_line33[p]:t_create_step33[p][j][k],
            t_create_step33[p][j][k]:p_create_line34[p],
            t_create_step33[p][j][k]:i_mutex[k]
        );
        guard(
          t_create_step33[p][j][k]:tk(p_parent[p])==j & tk(d_inode[j])==k
        );
        inhibit(i_mutex[k]:t_create_step33[p][j][k]);
      }
    }
    /* ---------- Create step 34 ---------- */
    // --- return SUCCESS
        trans
          t_create_step34[p];
        arcs(
          p_create_line34[p]:t_create_step34[p],
            t_create_step34[p]:p_begin[p]
        );
        inhibit(p_begin[p]:t_create_step34[p]);

  [...]
  [Unlink code]
  [Mkdir code]
  [Rmdir code]
  [...]

  } // ============= end process p

  // initialization
  init(
    /* root node is created at mount
       has itself and lost+found as subdirs
       has itself as parent */
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    d_allocated[ROOT]:1,
    d_inode[ROOT]:ROOT,
    d_parent[ROOT]:ROOT,
    d_subdirs[ROOT]:2,
    d_count[ROOT]:1,
    i_count[ROOT]:1,
    i_allocated[ROOT]:1,
    /* lost+found node is created at mount
       has itself as subdir
       has root as parent */
    d_allocated[LOST_FOUND]:1,
    d_inode[LOST_FOUND]:LOST_FOUND,
    d_parent[LOST_FOUND]:ROOT,
    d_subdirs[LOST_FOUND]:1,
    d_count[LOST_FOUND]:1,
    i_count[LOST_FOUND]:1,
    i_allocated[LOST_FOUND]:1
  );

  real ro   := reorder;
  bigint ns := num_states(false);
  bool db   := debug;

  stateset Deadlock := difference(reachable, prev(potential(true)));
  bigint  nDeadlock := card(Deadlock);
  bool    pDeadlock := printset(Deadlock);
  bool    tDeadlock := EFtrace(initialstate, Deadlock);

};

int ND := read_int("Number of d_entries");
int NI := read_int("Number of i_nodes");
int NP := read_int("Number of processes");
compute(ND);
compute(NI);
compute(NP);

print("********************************************************\n");
print("*                  VFS abstract model                  *\n");
print("********************************************************\n");
print("* System parameters:\n");
print("* - Dentry pool size:    ", ND, "\n");
print("* - Inode pool size:     ", NI, "\n");
print("* - Number of processes: ", NP, "\n");

//compute(EXT2(ND,NI,NP).ro);
compute(EXT2(ND,NI,NP).db);
print("\nNumber of reachable states: ", EXT2(ND,NI,NP).ns, "\n");

print("\nNumber of deadlocked states: ", EXT2(ND,NI,NP).nDeadlock);
compute(EXT2(ND,NI,NP).pDeadlock);
compute(EXT2(ND,NI,NP).tDeadlock);


