MIA 2.0: Richer Interface Automata
with Optimistic and Pessimistic Compatibility

Gerald Lüttgen
Software Technologies Research Group
University of Bamberg, Germany

(Joint work with Walter Vogler, University of Augsburg, Germany)
MIA 2.0: Further Improvements over IOMTS

- In our IA-inspired optimistic approach – MIA_{opt}
 - Making our MIA-setting more practical
 - Exploring the limitations of the MIA-setting

- **Disjunctive must-transitions not only for outputs but also for**
 - *Inputs* – more relaxed meaning of input-determinism
 - *Internal action τ* – more natural encoding of disjunction

- **MIA-refinement as a `better´ IOMTS-refinement**
 - Also considering τ-must-transitions on the specification side
 - Permitting *alphabet extension* on the implementation side

- **Alphabet extension is a crux in MIA_{opt}**
 - Exploring Bauer et al.‘s *pessimistic view of compatibility* – MIA_{pes}
MIA_{opt}: Weak Transition Relation

• Not done before in the presence of disjunctive transitions
 – To the best of our knowledge

• Weak may-transition relation \(\Rightarrow \) as usual
 – Leading and trailing \(\tau \)-may-transitions

• Weak output-must-transition relation as the least relation s.t.
 – \(p = \varepsilon \Rightarrow \{p\} \)
 – \(p = \varepsilon \Rightarrow P', \ p' \in P' \) and \(p' - \tau \rightarrow P'' \) implies \(p = \varepsilon \Rightarrow (P' \setminus \{p'\}) \cup P'' \)
 – \(p = \varepsilon \Rightarrow P' = \{p_1, ..., p_n\} \) and \(\forall j. \ p_j - \sigma \rightarrow P_j \) implies \(p = \sigma \Rightarrow \bigcup_j P_j \)
 – \(p = \sigma \Rightarrow P', \ p' \in P' \) and \(p' - \tau \rightarrow P'' \) implies \(p = \sigma \Rightarrow (P' \setminus \{p'\}) \cup P'' \)
MIA_{opt}: MIA-refinement

- Refinement relation as before, but in addition
 - Considering \(\tau \)-must-transitions on the specification side
 - Permitting alphabet extensions on the implementation side

- MIA-refinement \(\leq \)

Given MIAs \(P, Q \) s.t. \(I_P \supseteq I_Q \), \(O_P \supseteq O_Q \) and \(p \leq q \)

1. \(q \cdot i \rightarrow Q' \) implies \(\exists P'. p \cdot i \rightarrow P' \) and \(\forall p' \in P'. \exists q' \in Q'. p' \leq q' \)
2. \(q \cdot \tau \rightarrow Q' \) implies \(\exists P'. p = \varepsilon \Rightarrow P' \) and \(\forall p' \in P'. \exists q' \in Q'. p' \leq q' \)
3. \(q \cdot o \rightarrow Q' \) implies \(\exists P'. p = o \Rightarrow P' \) and \(\forall p' \in P'. \exists q' \in Q'. p' \leq q' \)
4. \(p \cdot i \rightarrow P' \) and \(i \notin I_Q \) implies \(\forall p' \in P'. p' \leq q \)
5. \(p \cdot \tau \rightarrow p' \) implies \(\exists q'. q \rightarrow \varepsilon \mapsto q' \) and \(p' \leq q' \)
6. \(p \cdot o \rightarrow p' \) and \(o \in O_Q \) implies \(\exists q'. q \rightarrow o \mapsto q' \) and \(p' \leq q' \)
7. \(p \cdot o \rightarrow p' \) and \(o \notin O_Q \) implies \(\exists q'. q \rightarrow \varepsilon \mapsto q' \) and \(p' \leq q' \)
MIA\textsubscript{opt}: Parallel Composition

- Compatibility as before, but one new transition rule is needed
 - Let action a be an input of p and an output of q, or vice versa
 - (Must3) $(p,q) \to \tau \to P' \times Q'$ if $p \to_a P'$ and $q \to_a Q'$

- Compositionality result still holds
 - Provided an alphabet extension does not result in new communications

- Proof requires a subtle lemma for weak must-transitions
 - If $p = a \implies P'$ and $q \to_a Q'$ then $(p,q) = \epsilon \implies R$ for some $R \subseteq P' \times Q'$
 - Observe that $R = P' \times Q'$ does not hold in general

\begin{itemize}
 \item $1 \xrightarrow{\tau} 2$
 \item $2 \xrightarrow{a!} 4$
 \item $3 \xrightarrow{a!} 5$
 \item $0 \xrightarrow{a?}$
\end{itemize}
MIA_{opt}: Disjunction & Conjunction

- Simplifying assumption, for the moment
 - Operands have the same input/output alphabets

- Disjunction \(\lor \)
 - More intuitive encoding, now using disjunctive \(\tau \)- and input-must-transitions
 - \((Must)\) \(p \lor q - \tau \rightarrow \{p, q\} \)
 - \((IMust)\) \(p \lor q - i \rightarrow P' \cup Q' \) if \(p - i \rightarrow P' \) and \(q - i \rightarrow Q' \)
 - Plus the underlying may-transitions
 - \(\lor \) is the least upper bound wrt. \(\leq \), which implies compositionality

- Conjunction \(\land \)
 - As before, where must-\(\tau \)s are treated in the same way as must-outputs
 - \(\land \) is the greatest lower bound wrt. \(\leq \), which implies compositionality
MIA\text{opt}: Dissimilar Alphabets & Conjunction

- Extending alphabets morally means to add `neutral` may-loops
 - Here, \(p \land q \) should intuitively be implementable by \(u \) and \(v \) but not \(w \)
 - No MIA\text{opt} has \(u \) and \(v \) but not \(w \) as implementations, since it cannot have an initial i?-transition because of \(v \)

- In MIA\text{opt} one cannot forbid an input in some state – crux!
The Pessimistic Approach – MIA\textsubscript{pes}

• Advocated by Bauer, Hennicker and co-workers (MIO [BMSH10])
 – *Pessimistic view of compatibility in an MTS-based interface theory*
 – **Our contributions:** (1) conjunction and disjunction operators,
 (2) disjunctive must-transitions, (3) alphabet extension

• Relaxed MIA
 – Defined as our original MIA but **no requirement for input-determinism**
 and **no requirement that may-inputs are must-inputs**

• Standard modal-refinement on relaxed MIA, i.e., $p \preceq q$ implies
 – *Must-input of q matched by p*
 • Possibly with **trailing-only** must-\(au\)s
 – *Must-output or must-\(au\) of q matched by p*
 • Possibly with leading and/or trailing must-\(au\)s
 – *May-action of p matched by q*
 • Possibly with leading and/or trailing may-\(au\)s
MIA_{pes}: Compatibility & Parallel Composition

• Restrictive form of compatibility
 – If any error state in a parallel composition can be reached via any action (including an input), then this composition is not defined
 – This approach distinguishes between $\bullet \xrightarrow{i?} \bullet _{E}$ and $\bullet \xrightarrow{i?} \not\rightarrow$

• Parallel composition operator defined as before
 – Compositionality of \leq in MIA_{pes} holds, as to be expected

• Crucial trade-off here
 – Classic view of may-inputs (i.e., input allowed or prohibited) is possible for a large class of systems that must not be input-deterministic
 – But pessimistic view of compatibility means that much fewer parallel compositions are permitted, which is bad for component-based design
MIA_{pes}: Disjunction & Conjunction

• First defined on MIAs with the same input/output alphabets
 – Disjunction exactly as in MIA_{opt}
 – Conjunction simpler as in MIA_{opt}
 • Inputs are treated the same way as outputs and τ

• Lifted to MIAs with dissimilar alphabets
 – Via alphabet extension operator $[p]_A$ (for A disjoint to p's alphabet), which adds an a-may-loop to every state of p, for every a in A
 – $[_]_A$ is monotonic wrt. \leq
 – $[_]_A$ is a homomorphism for conjunction

• Results, as to be expected
 – \lor is least upper bound
 and
 \leq is compositional for \lor
 – \land is greatest lower bound
 and
 \leq is compositional for \land
MIA_{pes}: Conjunction Example

- **Conjuncts with dissimilar alphabets**

 \[
 p \quad \begin{array}{c}
 \bullet \\
 \text{a?} \\
 \rightarrow \\
 \bullet \\
 \text{b!} \\
 \rightarrow \\
 \bullet
 \end{array}
 \]

 \[
 q \quad \begin{array}{c}
 \bullet \\
 \text{a?} \\
 \rightarrow \\
 \bullet \\
 \rightarrow \\
 \bullet \\
 \text{b!} \\
 \rightarrow \\
 \bullet \\
 \rightarrow \\
 \bullet
 \end{array}
 \]

- **Alphabet extension of conjunct \(p \)**

 \[
 [p]_{\{c!\}} \quad \begin{array}{c}
 \bullet \\
 \text{a?} \\
 \rightarrow \\
 \bullet \\
 \text{b!} \\
 \rightarrow \\
 \bullet \\
 \text{c!} \\
 \rightarrow \\
 \bullet \\
 \text{c!} \\
 \rightarrow \\
 \bullet \\
 \text{c!} \\
 \rightarrow \\
 \bullet
 \end{array}
 \]

 \[
 [q]_{\{\}} \quad \begin{array}{c}
 \bullet \\
 \text{a?} \\
 \rightarrow \\
 \bullet \\
 \rightarrow \\
 \bullet \\
 \text{b!} \\
 \rightarrow \\
 \bullet \\
 \rightarrow \\
 \bullet \\
 \text{c!} \\
 \rightarrow \\
 \bullet \\
 \rightarrow \\
 \bullet
 \end{array}
 \]

- **Conjunctive composition**

 \[
 p \land q = [p]_{\{c!\}} \land [q]_{\{\}}
 \]

\[
\begin{array}{c}
 \bullet \\
 \text{a?} \\
 \rightarrow \\
 \bullet \\
 \rightarrow \\
 \bullet \\
 \text{c!} \\
 \rightarrow \\
 \bullet
 \end{array}
 \]

\[
\begin{array}{c}
 \bullet \\
 \rightarrow \\
 \bullet \\
 \rightarrow \\
 \bullet
 \end{array}
 \]

\[
\begin{array}{c}
 \bullet \\
 \text{b!} \\
 \rightarrow \\
 \bullet
 \end{array}
 \]
Summary

Optimistic Approach
- **IA, IOMTS, MIA\textsubscript{opt}**
- **True open-systems view**
 - Generous compatibility
- **IA-style modal refinement**
 - Inputs: required, allowed
 - Input-determinism
- **Alphabet extension**
 - Conjunction and disjunction restricted to same alphabets

Pessimistic Approach
- **MIO, MIA\textsubscript{pes}**
- **Blurred open-systems view**
 - Restrictive compatibility
- **Standard modal refinement**
 - Inputs: required, allowed, **forbidden**
 - No input-determinism
- **General alphabet extension**
 - Alphabet extension operator
Conclusions & Future Work

• MIA is a well-founded interface theory that allows one to
 – Enforce outputs
 – *Express disjunctive must-transitions*
 – Specify non-deterministic behaviour
 – Abstract from internal computation
 – Interpret compatibility optimistically or pessimistically
 – *Compose interfaces also conjunctively and disjunctively*
 – *Extend alphabets while refining*

• Some questions left to future work
 – Are there `clean´ interface theories in-between the optimistic and pessimistic approaches?
 – *Is there a possibility to allow may-inputs while maintaining a true open-systems view?*
Selected Literature

