
An Algebraic Theory of Multiple Clocks

Rance Cleaveland1;?, Gerald L�uttgen2;??, and Michael Mendler3;? ? ?

1 Department of Computer Science, North Carolina State University, Raleigh,
NC 27695-8206, USA, e-mail: rance@eos.ncsu.edu

2 Fakult�at f�ur Mathematik und Informatik, Universit�at Passau, D{94030 Passau,
Germany, e-mail: fluettgen,mendlerg@fmi.uni-passau.de

Abstract. This paper develops a temporal process algebra, CSA, for
reasoning about distributed systems that involve qualitative timing con-
straints. It is a conservative extension of Milner's CCS that combines
the idea of multiple clocks from the algebra PMC with the assumption
of maximal progress familiar from timed process algebras such as TPL.
Using a typical class of examples drawn from hardware design, we moti-
vate why these features are useful and in some cases necessary for mod-
eling and verifying distributed systems. We also present fully-abstract
behavioral congruences based on the notion of strong bisimulation and
observational equivalence, respectively. For temporal strong bisimulation
we give sound and complete axiomatizations for several classes of pro-
cesses.

1 Introduction

Process algebras [10,12] provide a well-studied framework for modeling and ver-
ifying concurrent systems [6,8]. These theories typically consist of a simple lan-
guage with a rigorously de�ned semantics mapping terms to labeled transition
systems. They also usually support equational reasoning as a basis for system
veri�cation: an equivalence on processes is de�ned that equates systems on the
basis of their observable behavior, and this relation is used to relate speci�ca-
tions, which describe desired system behavior, and implementations. In order
to support compositional reasoning, researchers have typically concentrated on
equivalences that are also congruences for the given languages.

Traditionally, process algebras have been developed with a view toward mod-
eling the nondeterministic behavior of concurrent and distributed systems. More
recent work has incorporated other aspects of system behavior, including real
time [1,9,13,14,16]. Most of this later work, however, has been devoted to model-
ing centralized, as opposed to distributed systems; the real-time work, in partic-
ular, has (implicitly or explicitly) focused on systems with a single clock. In this

? Research supported by NSF/DARPA grant CCR-9014775, NSF grant CCR-9120995,
ONR Young Investigator Award N00014-92-J-1582, NSF Young Investigator Award
CCR-9257963, NSF grant CCR-9402807, and AFOSR grant F49620-95-1-0508.

?? Research support partly provided by the German Academic Exchange Service under
grant D/95/09026 (Doktorandenstipendium HSP II / AUFE).

? ? ? Author supported by the Deutsche Forschungsgemeinschaft.

paper we present a temporal process algebra, called CSA (Calculus for Synchrony
and Asynchrony), which is aimed at modeling distributed, timed systems that
contain a number of independent clocks. Technically, CSA extends Hennessy and
Regan's TPL [9] with constructs from PMC [1] that enable the management of
multiple clocks. In doing so we replace the global notion of maximal progress

found in TPL with a local one that is more appropriate for distributed systems.
This combination of features yields a convenient formalism for modeling dis-
tributed timed systems; it also introduces semantic subtleties the solutions to
which constitute the body of this paper.

It should be noted that clocks in CSA are intended to capture qualitative
timing constraints, in which it is not the absolute occurrence time or duration
of actions that is constrained but their relative ordering and sequencing with
respect to clocks. This contrasts with other theories of real-time, which typically
focus on precisely measuring the time that elapses between di�erent system
events. In this respect CSA follows the philosophy advocated by Nicollin and
Sifakis [14] and others, as well as synchronous languages such as ESTEREL [3].

2 Motivation

One standard hardware architecture consists of a number of cooperating syn-
chronous systems which are distributed over di�erent modules, e.g. chips or
boards. Typically, each module possesses its own central clock to update all
of its registers in a synchronous fashion. The clocks of di�erent modules are
independent, so that the modules change their states asynchronously with re-
spect to each other. Such architectures are also called globally-asynchronous,
locally-synchronous [4]. They not only arise through physical distribution, e.g.
in computer networks where di�erent sites cannot be synchronized by the same
clock, but are also typical for heterogeneous real-time applications. A concrete
example is the Br�uel & Kj�r 2145 Vehicle Signal Analyzer reported in [2].

2
σ

1σ

E

d

S

R

R
b

2

1

e

R

g
F TR

h

i
3

4

fin
Ebusy

B

c

busy

out

a

Module2Module1

Fig. 1. A globally-asynchronous, locally-synchronous system

A generic example for a globally-asynchronous, locally-synchronous system
is depicted in Fig. 1, where solid lines represent communication channels and
dashed lines symbolize channels of clocks. Both modules, Module1 and Module2,

have their own local clocks �1 and �2, respectively, and their own function blocks,
registers, and bu�ers. In every clock cycle, the function block E computes a new
value from the current values of the state registers R1 and R2, obtained through
channels a and b, and outputs it on channel c to be propagated further through
S to register R1 via channel d and to the environment via channel e. External
input enters the computation through channel in. Register R2 stores the most
recent input value from the environment and, thus, ensures that E never has to
wait for the environment. Component S and busy bu�er B are explained later.
Module2 operates in a similar fashion, with its external input being fed by the
output of Module1.

The example clearly suggests how we can bene�t from a concept of multiple
clocks to model real-world distributed systems. The question of what is an ade-
quate notion of clock leads us to the second characteristic of our process algebra:
the maximal progress assumption. The fundamental feature of the clock �1 is
that it must tick only after the previous clock cycle has been completed, i.e. after
the function block E has �nished its internal computations and the new value
has arrived at register R1. Otherwise, the value stored into R1 upon the tick of �1
is unde�ned. If Module1 has more than one register reading d they may all take
di�erent values, and an inconsistent state may arise. The maximal progress as-
sumption guarantees that a clock tick is delayed until all internal computations
or communications have come to an end.

To take account of distribution, the maximal progress property must be \lo-
calized" and imposed on every module independently. For instance, the clock �1
of Module1 must be able to tick as soon as the previous cycle of �1 has been
completed, regardless of the state of Module2, which operates asynchronously
with respect to Module1. In contrast, the traditional global version of maxi-
mal progress would imply that all clocks have to wait for all computations to
complete, whence the system would be globally synchronous.

The combined concept of multiple clocks and local maximal progress is quite
powerful. It supports horizontal and vertical forms of synchronous decomposition
that correspond to temporal abstractions with synchronized and nested scales
of time. The horizontal form has already been made explicit above. The vertical
form arises when we implement, say, the function E of Module1 as a whole
synchronous system in itself, with its own local clock (see Sect. 4).

3 Syntax and Semantics

In this section we de�ne the syntax and semantics of our language CSA, which
is inspired by the process algebras TPL [9] and PMC [1], which both descend
from ATP [14]. The syntax of CSA is essentially the same as in PMC; it ex-
tends Milner's CCS [12] with a timeout operator and a clock ignore operator.
The timeout operator occurs in other real-time process algebras [1,9] and was
originally introduced in ATP, where it is called unit-delay. The ignore operator
originates with PMC, though here it is a primitive operation, not derivable as
in PMC.

The semantical framework of CSA is based on a notion of transition system
that involves two kinds of transitions, action transitions and clock transitions,
modeling two di�erent mechanisms of synchronization and communication in
distributed systems. Action transitions, like in CCS, are local handshake com-
munications in which two processes synchronize to take a joint state change
together. A clock represents the progress of time, which manifests itself in a
recurrent global synchronization event, the clock transition, in which all process
components that are in the regime, or in the scope, of this clock are forced to
take part.

In CSA action and clock transitions are not orthogonal concepts that can
be speci�ed independently from each other, but are connected in line with the
following intuitions: (1) A clock records the progress of time, with two successive
clock events marking an interval of time. (2) The passage of time is determined
by internal computations that are within the regime of the clock. This yields
the very speci�c semantic connection between actions and clocks, known as the
maximal progress assumption [9,16]. Maximal progress usually is read as the
condition that \communications must occur whenever they are possible," i.e. a
process cannot be intercepted by a clock as long as it is able to perform internal
computations.

The last feature of CSA is clock scoping. Since we are dealing with distributed
systems and multiple clocks, it is natural to localize the maximal progress as-
sumption with respect to clocks and to limit the scope of clocks. A commu-
nication that reaches outside the scope is an external computation that must
be considered asynchronous with respect to the clock. Di�erent clocks, which
represent di�erent local views of time, may have disjoint, overlapping, or nested
scopes, and amount to di�erent abstractions of time.

Note that clocks in our setting are abstract in the sense that we do not prej-
udice any particular way to interpret them. We are free to think of a clock as the
ticking of a global real-time watch measuring o� absolute process time in con-
stant or non-constant intervals, as the system clock of a synchronous processor,
as a recurrent external interrupt, or as the completion signal of a distributed syn-
chronization protocol. Thus, clocks can be used as a general and
exible means
for bundling asynchronous behavior into sequenced intervals, and to give local
meaning to the notions of \before," \after," and \state."

3.1 Syntax of CSA

Formally, let � be a countable set of action labels, not including the so-called
silent or internal action � . With every a 2 � we associate a complementary

action a. We de�ne �
df
=fa j a 2 �g and take A to denote the set of all actions

� [� [f�g, where � =2 � [�. Complementation is lifted to � [� by de�ning
a = a. As in CCS [12] an action a communicates with its complement a to
produce the internal action � . We let a; b; : : : range over �[� and �; �; : : : over
A. Besides the set A of actions, CSA is parameterized in a set T = f�; �0; �; : : : g

of clocks. The syntax of our language is de�ned by the following BNF

P ::= 0 j x j �:P j P + P j P jP j P [f] j P n L j P "� j bP c�(P) j �x:P

where x is a variable taken from a countably in�nite set of variables V , f : A ! A
is a �nite relabeling, and L � A n f�g is a restriction set. For convenience,

we de�ne L
df
=fa j a 2 Lg. A �nite relabeling satis�es the properties f(�) = � ,

f(a) = f(a), and jf� j f(�) 6= �g j < 1. Moreover, " is called the (static) ig-

nore operator and b�c�(�) the timeout operator. Further, we use the standard
de�nitions for the sort of a term P , sort(P) � � [�, static and dynamic oper-
ators, free and bound variables, open and closed terms, and contexts. A process
variable is called guarded in a process term if each occurrence of the variable
is in the scope of a pre�x or of the second argument of a timeout (see below).
We refer to closed and guarded terms as processes. Let P be the set of all pro-
cesses, ranged over by P;Q;R, and denote syntactic equality on P by �. We

extend the timeout operator to sequences of clocks by de�ning bP c
df
=P and

bP c�1(Q1) : : : �n(Qn)
df
= bbP c�1(Q1) : : : �n�1(Qn�1)c�n(Qn). We often further

abbreviate sequences �1 : : : �n of clocks by � and sequences Q1 : : :Qn of pro-
cesses by Q. In this vein, bP c�(Q) is a shorthand for bP c�1(Q1) : : : �n(Qn).

Table 1. Clock scoping

I�(�:P)
df
=f�g I�(�x:P)

df
=I�(P [�x:P=x])

I�(P +Q)
df
=I�(P) [I�(Q) I�(P jQ)

df
=I�(P) [I�(Q) [f� j I�(P) \ I�(Q) 6= ;g

I�(P [f])
df
=ff(�) j� 2 I�(P)g I�(P n L)

df
=I�(P) n (L [L)

I�(bP c�
0(Q))

df
=I�(P) I�(P "�0)

df
=I�(P) if � 6= �0

3.2 Semantics of CSA

The operational semantics of a CSA process P 2 P is given by a labeled transition
system hP ;A[T ;�!; P i where P is the set of states, A[T the alphabet, �!
the transition relation, and P the start state. We refer to transitions with labels
in A as action transitions, and to those with labels in T as clock transitions. The
transition relation �!� P � (A [T) � P for CSA is de�ned in Table 2 using
operational rules. For the sake of simplicity, let us use
 for a representative of

A[T , and write P

! P 0 instead of hP;
; P 0i 2�! and P

! for 9P 0 2 P: P

!

P 0.
To ensure maximal progress the operational rules involve side conditions on

initial action sets. Beside the usual de�nition of I(P) for the initial action set
of a process P { where I(P "�) and I(bP c�(Q)) are given by I(P) { we de�ne
the set I�(P) � I(P) of all initial actions of P within the scope of the clock �

as the smallest set satisfying the equations in Table 1. Note that the sets I(P)
and I�(P) are well-de�ned since all processes are closed and guarded. Moreover,
I�(P) = I(P) whenever P does not contain any ignore operator. Finally, we

de�ne initial visible action sets by II(P)
df
=I(P) n f�g and II�(P)

df
=I�(P) n f�g.

Table 2. Operational semantics for CSA

Act
��

�:P
�
! P

tAct
��

a:P
�
! a:P

� 2 T

Sum1
P

�
! P 0

P +Q
�
! P 0

tNil
��

0
�
! 0

� 2 T

Sum2
Q

�
! Q0

P +Q
�
! Q0

tSum
P

�
! P 0 Q

�
! Q0

P +Q
�
! P 0 +Q0

Rel
P

�
! P 0

P [f]
f(�)
! P 0[f]

tRel
P

�
! P 0

P [f]
�
! P 0[f]

Res
P

�
! P 0

P n L
�
! P 0 n L

� =2 L [L tRes
P

�
! P 0

P n L
�
! P 0 n L

Com1
P

�
! P 0

P jQ
�
! P 0jQ

tCom
P

�
! P 0 Q

�
! Q0

P jQ
�
! P 0jQ0

� =2 I�(P jQ)

Com2
Q

�
! Q0

P jQ
�
! P jQ0

tIgn1
��

P "�
�
! P "�

Com3
P

a
! P 0 Q

a
! Q0

P jQ
�
! P 0jQ0

tIgn2
P

�0

! P 0

P "�
�0

! P 0 "�
� 6= �0

Ign
P

�
! P 0

P "�
�
! P 0 "�

tTO1
��

bP c�(Q)
�
! Q

� =2 I�(P)

TO
P

�
! P 0

bP c�(Q)
�
! P 0

tTO2
P

�0

! P 0

bP c�(Q)
�0

! P 0

� 6= �0

Rec
P [�x:P=x]

�
! P 0

�x:P
�
! P 0

tRec
P [�x:P=x]

�
! P 0

�x:P
�
! P 0

The operational semantics for action transitions extends the one of CCS
by rules dealing with the ignore and the timeout operator. More precisely, the
process �:P may engage in action � and then behave like P . The summation

operator + denotes nondeterministic choice, i.e. the process P + Q may either
behave like P orQ. The restriction operator nL prohibits the execution of actions
in L[L and thus permits the scoping of actions. P [f] behaves exactly as P where
ordinary actions are renamed by the relabeling f . The process P jQ stands for
the parallel composition of P and Q according to an interleaving semantics with
synchronized communication on complementary actions resulting in the internal
action � . The processes P "� and bP c�(Q) behave like P for action transitions.
The timeout operator disappears as soon as P engages in an action transition,

thereby observably changing its state. Finally, �x: P denotes recursion, i.e. �x: P
is a process which behaves as a distinguished solution of the equation x = P .

With respect to clock transitions the operational semantics is set up such
that if � 2 I�(P) then the clock � is inhibited. We refer to this kind of pre-
emption as local maximal progress. Its local nature lies in the facts that, in
general, I�(P) 6= I(P) and that the sets I�(P) may be di�erent for di�erent
clocks. Accordingly, the process �:P may idle for each clock � whenever � 6= � .
Time has to proceed equally on both sides of summation, i.e. P+Q can engage in
a clock transition and, thus, delay the nondeterministic choice if and only if both
P and Q can engage in the clock tick. Also both argument processes of a parallel
composition have to synchronize on clock transitions according to Rule tCom.
Its side condition implements local maximal progress and can alternatively be
written as II�(P) \ II�(Q) = ;, i.e. there is no pending communication between
P and Q on an action that lies in the scope of �. Regarding the ignore operator,
the process P "� is capable of performing a �-loop, i.e. P ignores �, regardless

if � 2 I�(P) or not. This is consistent with our de�nition I�(P "�)
df
= ;, which

means that none of the initial actions of P is in the scope of clock �. Thus, " is
actually not a scoping but a co-scoping operator, i.e. all processes are assumed
to be within the scope of all clocks unless explicitly excluded using an ignore.
Using co-scoping instead of scoping simpli�es the operational rules when dealing
with multiple local clocks, since the traditional rules for summation and parallel
composition with respect to timed transitions need not be changed. Moreover,
the process bP c�(Q) can perform a �-transition to Q provided P cannot engage
in an internal action which is in the scope of clock �. Since a clock transition
too represents an observable change of state, the timeout operator disappears
as soon as P engages in such a transition. This intuition is the same as for the
corresponding unit-delay operator in ATP [14]. For multiple clocks this leads to
rule tTO2 in which the timeout for � is dropped when a di�erent �0 ticks. The
idea is that the ordering of the � and �0 ticks is observable and the �rst one
determines the state change. Note, however, that by using recursion to insert
explicit clock idling persistent versions of the timeout can be obtained.

The operational semantics for CSA possesses several important properties.
First, the summation and the parallel operator of CSA are associative and com-
mutative. Second, a process can always engage in a clock transition provided
it cannot perform an internal action which is in the scope of this clock. For-
mally, � =2 I�(P) implies P

�
!. Third, the semantics satis�es the local maximal

progress and the local time determinacy property. Both are generalizations of
the well-known maximal progress and time determinacy properties, for global
time, to a local notion of time in terms of multiple local clocks. Local maxi-
mal progress states that P

�
! implies � =2 I�(P). Time determinacy, which is a

common feature of all real-time process algebras, states that processes react in
a deterministic way to clock ticks, re
ecting the intuition that mere progress of
time does not resolve choices. Formally, P

�
! P 0 and P

�
! P 00 implies P 0 � P 00.

It is not di�cult to see that CSA is a conservative extension of TPL if we
drop TPL's unde�ned process
, which has been introduced to de�ne a semantics

based on testing [7]. Restricting T to a single clock, say T = f�g, and dropping
the ignore operator, gives us precisely the syntax and operational semantics of
TPL. Note that in this single-clock version of CSA the timed pre�xing of TPL

can be derived as �:P
df
=b0c�(P). Moreover, CCS [12] can be identi�ed as the

subcalculus of CSA which is obtained by de�ning T = ;.
Finally, it is worth mentioning that CSA allows us to express clock constraints

by processes. For example, if we want to relate the speeds of clocks we can
do so by composing the system under consideration in parallel with a process
expressing the corresponding constraint. As this issue is not central to this paper,
however, we do not address it further.

4 Example (revisited)

Now we formally describe the example presented in Sect. 2 in our algebra CSA.

E

H

R

c

b

j k

l

G

ρ

busy

5

U

m

a

E

Fig. 2. Component E (re�ned)

We refer to Fig. 1 and assume that we re-
�ne the function module E by a complete
synchronous subsystem with its own lo-

cal clock � 2 T
df
=f�1; �2; �g, as depicted

in Fig. 2. At top level the structure of
the overall system System is (Module1 "
�2 j Module2"�1 "�) n feg. This captures
the asynchronous parallel composition of
Module1 and Module2. The ignore oper-
ators " �1 and " �2 are introduced so as
to make both modules ignore each other's
clocks. The clock � is internal to Module1,
whence Module2 ignores it with " �. The
channel e connecting both modules is in-
ternal to System, and thus restricted by
nfeg.

At the next structural level we break
up the two asynchronous modules, each of which is a synchronous subsys-
tem. Let us look at the internals of Module1, which is (E j(R1 j R2 j S jB) "
�) n fa; b; c; d; busy

E
g. It is a parallel composition of a function block E, state

registers R1 and R2, a busy bu�er B, and a special fork component S. These com-
ponents communicate via the channels fa; b; c; d; busy

E
g which are internal to

Module1 and hence are restricted away. The parallel subsystem (R1 j R2 j S jB)"�
ignores the clock �, making � local to the function block E. This function block

�nally is decomposed to the synchronous system E
df
=(H j G jR5 jU) n fj; k; l;mg.

Now let us turn our attention to the synchronous subsystem E (cf. Fig. 2).
Block E should read its inputs from channels a and b, take an arbitrary number of
cycles of clock � to compute a result that is then passed over to the environment
on output channel c. The algorithm for this computation is contained in function
block G. The register R5 stores the intermediate values, i.e. represents the local
state on which the algorithm works. The function block Hmay be a preprocessing

stage, and the component U is assumed to be a fork process that distributes the

data on its input k to outputs c and l, i.e. U
df
=�x0: k:l:(�x1: c:x0 + �:x1). The

� -loop indicates waiting for external output through channel c, which will inhibit
the local clock � as long as the output has not been delivered.

In CSA the register might be speci�ed as R5
df
=�x: bl:xc�(�y:m:x+ l:y). It

continuously accepts an updating input on channel l, and when the clock �
ticks it changes its state to �y:m:R5 + l:y. In this state the output action m
starts the next computation cycle, while the l-loop makes sure that the register
is always input enabled. If our channels would carry real data then the new
value injected into the next cycle with m would be the last value read in from
input l before the clock tick. This means that the l-loop after the clock must
not change the registered value. From the value supplied by m after each clock
tick, the function blocks compute a next state value that eventually ends up
being latched into R5 again through l. Then the cycle is completed and � may
tick again. To indicate the simplest case of a function block let H be the trivial

iteration H
df
=�x: a:�:j:x. Accordingly, H �rst reads an external input from a,

then performs an internal computation represented by � , and �nally outputs on
j, whereupon it returns to the initial state. For a function block with more than
one input more complicated input-output pattern are possible. For instance, we
want G to implement an algorithm that reads its inputs b and j and initial state
m and then computes its function in a number of steps, storing intermediate
results in register R5. The following CSA process speci�es such a behavior:

G
df
=�x0:m:j:b:G1 G1

df
=�x1: �:(k:x0 + k:G2) G2

df
=�x2:m:x1 + busy

E
:x2 :

G consumes the register value on m and the result of function H on j, reads an
input from the environment through channel b, and then passes to G1, which
is the actual computation state. After a �nite amount of internal computation,
indicated by the leading � , a result is computed that may be output with action
k. Now two possibilities arise: either the algorithm is completed, in which case
we pass back to the initial state G (variable x0), or we carry on with another
clock cycle, in which case we move to state G2. This decision, of course, depends
on the data, but since we do not consider values, we model this as a nondeter-
ministic choice. In G2 we have reached a �nal state of a single � clock cycle, but
only an intermediate state of the algorithm implemented by E. The busy

E
-loop

signals this to the environment of E in order to inhibit the outer clock �1. In the
intermediate state G2 of the algorithm we do not need to read new input data,
but only get the next state by m and continue with G1.

The above speci�cation example shows how the ignore operator can be used
to localize clocks, and the timeout operator to model the synchronized updating
of registers. Maximal progress controls when a clock tick is possible and when
it is delayed. The only way to stop a clock is by internal divergence, e.g. arising
from a feed-back loop that does not contain any clocked register. In this case
of a violated design rule, the functional blocks produce divergence and the local
clock of that module is never able to tick. This relationship between design error,

internal divergence, and conceptual time stop is very natural for synchronous
hardware, which stresses the adequacy of the maximal progress model.

5 Temporal Strong Bisimulation

The transition systems produced by the operational semantics are a rather �ne-
grained semantic view of processes. Therefore, we develop a semantic theory
based on bisimulation [12]. Our aim in this section is to characterize the largest
congruence contained in the \naive" strong bisimulation [12] where we treat
clocks as actions.

De�nition 1. A symmetric relation R � P � P is called naive strong bisimu-

lation if for every hP;Qi 2 R,
 2 A[T , the following condition holds: P

! P 0

implies 9Q0: Q

! Q0 and hP 0; Q0i 2 R. We write P �nQ if there exists a naive

strong bisimulation R such that hP;Qi 2 R.

It is straightforward to establish that �n is the largest naive strong bisimulation
and that �n is an equivalence relation. Unfortunately, �n is not a congruence.
The reason is that the transition system of a process P does not contain the clock
scoping information I�(P) needed to determine the transition system of C[P] for
all contexts C[X]. For instance, a:0�n a:0"� but a:0 j a:0 6�n (a:0"�) j a:0 since
the right-hand process can do a �-transition while the corresponding �-transition
of the left-hand process is pre-empted due to maximal progress. In this example
a:0 and a:0 " � have identical transition systems but di�erent clock scoping,
e�ecting di�erent pre-emption of clock transitions in parallel contexts. In order
to �nd the largest congruence contained in �n we have to take into account the
scope of clocks.

De�nition 2. A symmetric relationR � P�P is a temporal strong bisimulation

if for every hP;Qi 2 R, � 2 A, and � 2 T the following conditions hold.

1. P
�
! P 0 implies 9Q0: Q

�
! Q0 and hP 0; Q0i 2 R .

2. P
�
! P 0 implies II�(Q) � II�(P) and 9Q0: Q

�
! Q0 and hP 0; Q0i 2 R .

We write P 'Q if hP;Qi 2 R for some temporal strong bisimulation R.

The de�nition of P 'Q requires not only that all clock transitions in P and
Q must match each other, but also that with respect to all these clocks � the
pre-emption potential of both P and Q must be identical, i.e. II�(P) = II�(Q).

Theorem 3. The relation ' is the largest congruence contained in �n.

Axiomatic Characterization

In this section, we provide an axiomatization of ' for regular processes, i.e.
a class of �nite-state processes that do not contain static operators inside re-
cursion. In order to develop the axiomatization, it is convenient to add a new

ignore operator # to CSA, called dynamic ignore, which is compositional with
respect to temporal strong bisimulation. Its semantics is de�ned by the following
operational rules.

DIgn
P

�
! P 0

P #�
�
! P 0

tDIgn1
��

P #�
�
! P #�

tDIgn2
P

�0

! P 0

P #�
�0

! P 0 #�
� 6= �0

Moreover, we extend the de�nition of I�(�) by I�(P #�)
df
=I�(P "�).

A process P 2 P is called regular if it is built from nil, pre�x, summation,
timeout, dynamic ignore, variables, and recursion. We say that P is rs-free, where
rs abbreviates recursion through static operators, if every subterm �x:Q of P is
regular. Finally, a process P is �nite if it does not contain the recursion operator.

Table 3. Axiomatization of ' (Part I)

(A1) t+ u=u+ t (B1) bbtc�(u)c�(v)= btc�(v)
(A2) t+ (u+ v)= (t+ u) + v (B2) bbtc�(u)c�0(v)= bbtc�0(v)c�(u) � 6= �0

(A3) t+ t= t (B3) btc�(u) + bvc�(w)= bt+ vc�(u+ w)
(A4) t+ 0= t

(D1) 0[f] =0 (C1) 0 n L=0

(D2) (�:t)[f] = f(�):(t[f]) (C2) (�:t) n L=0 � 2 L [L

(D3) (t+ u)[f] = t[f] + u[f] (C3) (�:t) n L=�:(t n L) � =2 L [L
(D4) (btc�(u))[f] = bt[f]c�(u[f]) (C4) (t+ u) n L= t n L+ u n L

(C5) (btc�(u)) n L= bt n Lc�(u n L)

Now, we turn to the axioms for temporal strong bisimulation. We write ` P =
Q if P can be rewritten to Q by using the axioms in the Tables 3, 4, and 5 which
are sound for arbitrary CSA processes. Many axioms are identical to the ones
presented in [1] for PMC. Axioms (L1){(L8) and (I8) deal with the new dynamic
ignore operator, where Axiom (I8) captures the relationship between the static
and the dynamic ignore operator. Moreover, the expansion axiom, Axiom (E),
has been adapted for our algebra. The new semantic extension compared to PMC
is re
ected by Axioms (P1), (P2), (S1), and (S2). Equations (P1) and (P2) deal
with the (local) pre-emptive power of � , and Equations (S1) and (S2) make the
implicit idling of clocks explicit.

Axioms (L5) and (L6) allow us to introduce P #T , where T = f�1; : : : �ng is
a �nite set of clocks, as a shorthand for P # �1 : : : # �n. The same is true if we
replace the dynamic ignore operator by the static one (cf. Axioms (I5) and (I6)).
Thus, the simplifying notation in Axioms (L8), (P1), (P2), and (E) is justi�ed.

In order to prove the completeness of our axiomatization with respect to
temporal strong bisimulation we introduce a notion of normal form that is based
on the following de�nition. A term t is called in summation form if it is of the
shape t � b

P
i2I(
P

j2Ji
�i:xij)#Tic�(y), where

P
is the indexed version of +,

Table 4. Axiomatization of ' (Part II)

(I1) 0"�=0 (I5) (t"�)"�= t"�
(I2) (t+ u)"�= t"� + u"� (I6) (t"�)"�=(t"�)"�
(I3) (t n L)"�=(t"�) n L (I7) (btc�(u))"�= bt"�c�(u"�)�((btc�(u))"�)
(I4) (t[f])"�=(t"�)[f] (I8) (�:t)"�=(�:(t"�))#�

(L1) 0#�=0 (L5) (t#�)#�= t#�
(L2) (t+ u)#�= t#� + u#� (L6) (t#�)#�=(t#�)#�
(L3) (t n L)#�=(t#�) n L (L7) (btc�(u))#�= bt#�c�(u#�)�((btc�(u))#�)
(L4) (t[f])#�=(t#�)[f] (L8) (�:t)#T + (�:u)#T 0=(�:t+ �:u)#(T \ T 0)

(S1) 0= b0c�(0) (P1) (�:t)#T + u#�=(�:t)#T + u � =2 T
(S2) �:t= b�:tc�(�:t) (P2) b(�:t)#T + uc�(v)= (�:t)#T + u � =2 T

the xij and y = y1; y2; : : : ; yn are process variables, � = �1; �2; : : : ; �n clocks,
and �i 2 A. The index sets I and Ji, i 2 I , are assumed to be �nite, possibly
empty, initial intervals of the natural numbers. By de�nition,

P
i2; ti � 0 is in

summation form.

Table 5. Axiomatization of ' (Part III)

(E) Let t � b
P

i2I
(
P

j2Ji
�i:tij)#Tic�(v) ; u � b

P
i2I

(
P

k2Ki

�i:uik)#Uic�(w)

and � � �1; : : : ; �n :Then t ju = brc�1(v1 jw1) : : : �n(vn jwn) where
r �
P

i2I
((
P

j2Ji
�i:(tij ju))#Ti + (

P
k2Ki

�i:(t juik))#Ui) +P
i;i02I

f
P

j2Ji

P
k2Ki

(�:(tij jui0k))#(Ti [Ui0) j �i = �i0g

(R0) �x:t = �y:(t[y=x]) y does not occur in t
(R1) �x:t = t[�x:t=x]
(R2) ` u = t[u=x] implies ` u = �x:t x guarded in t

The Expansion Axiom (E) in Table 5 shows how we can eliminate the parallel
composition operator. The timeout part of tju is de�ned componentwise for each
clock. The summation part r splits up into two summands. The summand in the
�rst line considers action transitions performed by one side alone, while the sum-
mand in the second line deals with the communication case. The dynamic ignore
operators are determined naturally by our clock-scoping semantics. Speci�cally,
the dynamic ignore set # Ti [Ui0 leaves the internal action � in the scope of a
clock � if and only if � =2 Ti and � =2 Ui0 , i.e. � is connected to each of the
communicating actions �i and �i0 .

De�nition 4. The term t � b
P

i2I(
P

j2Ji
�i:xij)#Tic�(y) in summation form

is in normal form if it satis�es the following: (1) 8i 2 I: �i = � i� i = 0,

(2) 8i; i0 2 I: i 6= i0 implies �i 6= �i0 , and (3) 8� 2 T : J0 6= ; ^ � =2
T0 implies � =2 � ^ 8i 2 I: � =2 Ti.

The completeness proof adapts Milner's technique [11] in characterizing recur-
sive processes uniquely by systems of equations in normal form. A normal form

equation system, into which every regular process can be unrolled, is a sequence
hyi = ti j i < ni (n � 1) of equations such that all ti are in normal form and the
free variables of all ti are among y.

Theorem 5. For regular processes P and Q we have: ` P = Q i� P 'Q.

The completeness result can be extended to the class of rs-free processes by elim-
inating the static operators, using the Expansion Axiom (E) to get rid of par-
allel composition, eliminating restriction by Axioms (C1){(C5), (L3), and (I3),
and renaming by Axioms (D1){(D4), (L4), and (I4). Finally, leaving out Ax-
ioms (R0){(R2) for recursion, we obtain a complete axiomatization for �nite

processes. The corresponding completeness proof follows the standard lines (cf.
[12]). It is based on a notion of normal form for terms, which corresponds to the
one in De�nition 4 where we substitute the variables xij and yk by terms that
are again in normal form.

6 Temporal Observational Congruence

The semantic congruence developed in the previous section is too �ne for verify-
ing systems in practice since it requires that two equivalent systems must match
each other's internal transitions exactly. Consequently, we want to abstract from
internal actions and develop a semantic congruence from the point of view of an
external observer.

Observational equivalence is a notion of bisimulation in which any sequence

of internal � 's may be skipped. For
 2 A[T we de�ne
̂
df
= � if
 = � and
̂

df
=
,

otherwise. Further, let
�
)

df
=

�
!

�
and P

) Q i� there exist processes R and S

such that P
�
) R

! S

�
) Q. Carrying over Milner's weak bisimulation [12] to

CSA naively would suggest the following de�nition.

De�nition 6. A symmetric relation R � P�P is a naive temporal weak bisim-

ulation if for every hP;Qi 2 R,
 2 A[T , the following condition holds: P

! P 0

implies 9Q0: Q

̂
) Q0 and hP 0; Q0i 2 R. We write P �nQ if there exists a naive

temporal weak bisimulation R such that hP;Qi 2 R.

It is not surprising that �n is not a congruence, for the same reason that weak
bisimulation equivalence is not a congruence for CCS. In contrast to CCS, how-
ever, �n is not even a congruence for parallel composition. The problem is that,
again, the relation fails to account for clock scoping. The following re�nement
of the above de�nition is needed for the static contexts.

De�nition 7. A symmetric relation R � P�P is a temporal weak bisimulation

if for every hP;Qi 2 R, � 2 A, and � 2 T the following conditions hold.

1. P
�
! P 0 implies 9Q0: Q

�̂
) Q0 and hP 0; Q0i 2 R .

2. P
�
! P 0 implies

9Q0; Q00; Q000: Q
�
) Q00 �

! Q000 �
) Q0 , II�(Q

00) � II�(P), and hP 0; Q0i 2 R .

We write P �Q if hP;Qi 2 R for some temporal weak bisimulation R.

Proposition 8. The relation � is a congruence with respect to pre�xing and

the static CSA operators. It is characterized as the largest congruence contained

in �n, in the subalgebra of CSA induced by these operators.

In order to identify the largest equivalence contained in �n that is also a congru-
ence for the other dynamic operators, the summation �x of CCS is not su�cient
due to the special nature of clock transitions.

De�nition 9. A symmetric relation R � P � P is a temporal observational

congruence if for every hP;Qi 2 R, � 2 A, and � 2 T the following conditions
hold:

1. P
�
! P 0 implies 9Q0: Q

�
) Q0 and P 0�Q0 .

2. P
�
! P 0 implies II�(Q) � II�(P) and 9Q0: Q

�
! Q0 and hP 0; Q0i 2 R .

We write P �Q if hP;Qi 2 R for some temporal observational congruence R.

Theorem 10. The relation � is the largest congruence contained in �n.

For details as well as the proofs of our results we refer the reader to [5].

7 Conclusions

We have presented the temporal process algebra CSA with multiple clocks and a
local maximal progress assumption. CSA is closely related to the process algebras
TPL and PMC which both are inspired by ATP. Whereas TPL does not deal with
multiple clocks, and the semantics of PMC does not ensure maximal progress,
CSA combines both features under the special consideration of the distribution of
systems. By means of a generic example we have demonstrated the utility of CSA
as a semantic framework for dealing with synchrony and asynchrony in which
we can express various levels of time and synchronization. We have developed a
fully-abstract semantic theory based on the notion of bisimulation. Alternative
characterizations of our behavioral relations (see [5]) allow us to adapt standard
partition re�nement algorithms [15] for their computation.

Moreover, our results show that CSA is a conservative extension of TPL not
only in terms of operational semantics but also in terms of strong and weak
bisimulation. This means that our main theorems also apply to TPL. In partic-
ular, specializing Theorem 10 to the TPL fragment yields a characterization of
observational congruence for TPL.

Future work will especially focus on two aspects. On the one hand, CSA
should be implemented in the Concurrency Workbench of North Carolina [6], an
automatic veri�cation tool. On the other hand, an axiomatic characterization of
temporal observational congruence may be interesting since it would support a
better understanding of the underlying semantic theory and simplify a compar-
ison with other temporal process algebras.

References

1. H.R. Andersen and M. Mendler. An asynchronous process algebra with multiple
clocks. In D. Sannella, editor, European Symposium on Programming, volume 788
of Lecture Notes in Computer Science, pages 58{73. Springer-Verlag, 1994.

2. H.R. Andersen and M. Mendler. Describing a signal analyzer in the process algebra
PMC | A case study. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach,
editors, Theory and Practice of Software Development, TAPSOFT'95, volume 915
of Lecture Notes in Computer Science, pages 620{635. Springer-Verlag, 1995.

3. G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
Design, semantics, implementation. Science of Computer Programming, 19:87{152,
1992.

4. D.M. Chapiro. Reliable high-speed arbitration and synchronization. IEEE Trans-
action on Computers, C-36(10):1251{1255, October 1987.

5. R. Cleaveland, G. L�uttgen, and M. Mendler. An algebraic theory of multiple clocks.
Technical report, North Carolina State University, Raleigh, NC, USA, 1997. To
appear.

6. R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In R. Alur and
T. Henzinger, editors, Computer Aided Veri�cation (CAV '96), volume 1102 of
Lecture Notes in Computer Science, pages 394{397, New Brunswick, New Jersey,
July 1996. Springer-Verlag.

7. R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83{133, 1983.

8. W. Elseaidy, J. Baugh, and R. Cleaveland. Veri�cation of an active control system
using temporal process algebra. Engineering with Computers, 12:46{61, 1996.

9. M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117:221{239, 1995.

10. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985.
11. R. Milner. A complete inference system for a class of regular behaviours. Journal

of Computer and System Sciences, 28:439{466, 1984.
12. R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.
13. F. Moller and C. Tofts. A temporal calculus of communicating systems. In J.C.M.

Baeten and J.W. Klop, editors, CONCUR '90, volume 458 of Lecture Notes in
Computer Science, pages 401{415, Amsterdam, August 1990. Springer-Verlag.

14. X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and
application. Information and Computation, 114:131{178, 1994.

15. R. Paige and R.E. Tarjan. Three partition re�nement algorithms. SIAM Journal
of Computing, 16(6):973{989, December 1987.

16. W. Yi. CCS + time = an interleaving model for real time systems. In J. Leach
Albert, B. Monien, and M. Rodr�iguez Artalejo, editors, Automata, Languages and
Programming (ICALP '91), volume 510 of Lecture Notes in Computer Science,
pages 217{228, Madrid, July 1991. Springer-Verlag.

