
Experiences working with 
Verifast, Predator and Forester

dsOli/DSI Day, 15th January 2016

Jan Boockmann



table of contents

I. shape analysis
I. Predator & Forester

II. Verifast

II. experiences, comparison & outlook

2



shape analysis

• subtopic of program analysis

• static code analysis technique (used at compile time)

• verify properties of linked, dynamically allocated data structures 
(reason about the heap)

• applicable in the field of compile-time optimization and program 
verification

3



shape analysis (cont'd)

• prove termination

• (partial/total) correctness (i.e. does this function really sort a list)

• check concurrent programs (deadlocks or mutex relations)

• verification of safety properties (memory leaks, null dereference, 
multiple frees, array out of bound errors)

• may-alias, must-alias, sharing, reachability, disjointness, cyclicity, etc.

4



shape analysis (cont'd)

• most of the approaches are graph based

• to achieve scalable tools heap abstraction is required

5



Predator

• tool for automated formal verification of sequential C programs 
operating with pointers and linked lists

• was successful in the last four SVCOMPs (1G/2S/1B)

• inspired by works on separation logic, but now purely graph-based

• supported operations: pointer arithmetic, reinterpretation of memory 
contents, address alignment, …

• “hunts” for memory safety errors

• similar tools: SpaceInvader[Calcagno2009]

6



Forester

• tool for checking manipulation of dynamic data structures in 
sequential C programs

• using forest automata

• searches for the same kind of errors as Predator

• really difficult to understand

7



Forester (cont'd)

• heap is split at cut-points intro tree components

inspired by separation logic

• tree automata represent set of tree components

• forest automata represent tuples of tree automata

8



Forester (cont'd)

• structures with unboundedly many cut-points are represented 
hierarchically  boxes

9



example

10



Verifast

“VeriFast is a verifier for single-threaded and multithreaded C and 
Java programs annotated with preconditions and postconditions
written in separation logic. […] The programmer may define inductive 
datatypes, primitive recursive pure functions over these datatypes, 
and abstract separation logic predicates. To enable verification of these 
rich specifications, the programmer may write lemma functions. […] 
Since neither VeriFast itself nor the underlying SMT solver need to do 
any significant search, verification time is predictable and low.”

http://people.cs.kuleuven.be/~bart.jacobs/verifast/

11



separation logic[Reynolds2002]

• extension of Hoare logic

• introduces the ‘separating conjunction’ and the ‘frame rules’

• allows modular reasoning

12



example

13



experiences & comparison

• soundness

• definition of memory safety

• automation

• “debuggability”

14



outlook

• writing annotations is complex and time consuming

• average of 2.17 lines of C code verified per hour [Philippaerts2014]

• automating parts of this process can greatly enhance the use of 
VeriFast

• dsOli could only generate annotations for non-nested data structures
[Mühlberg2015]

• DSI is more powerful and can cope nested data structures

15



literature

• Jan Tobias Mühlberg, David H. White, Mike Dodds, Gerald Lüttge and Frank 
Piessens. 2015. Learning Assertions to Verify Linked-List Programs. 13th Intl. Conf. 
on Software Engineering and Formal Methods. Springer-Verlag

• Philippaerts, P., Mühlberg, J. T., Penninckx, W., Smans, J., Jacobs, B., and Piessens, 
F. Software verifcation with VeriFast: Industrial case studies. Science of Computer 
Programming, 82:77 97, 2014.

• Cristiano Calcagno, Dino Distefano, Peter O'Hearn, and Hongseok Yang. 2009. 
Space Invading Systems Code. In Logic-Based Program Synthesis and 
Transformation, Michael Hanus (Ed.). Lecture Notes In Computer Science, Vol. 
5438. Springer-Verlag, Berlin, Heidelberg 1-3

• John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data 
Structures. In Proceedings of the 17th Annual IEEE Symposium on Logic in 
Computer Science (LICS '02). IEEE Computer Society, Washington, DC, USA, 55-74. 

• Predator/Forester GIT Repository: https://github.com/kdudka/predator

16


